Mostrando artículos por etiqueta: sobrevuelo - Instituto Geofísico - EPN

Los días 21 y 23 de diciembre de 2016, personal técnico del Área de Vulcanología del Instituto Geofísico de la Escuela Politécnica Nacional (IGEPN), realizó dos sobrevuelos a los volcanes activos del Ecuador. El día 21 de diciembre en una avioneta CESSNA 206 STATIONAIR a los volcanes Sangay y Tungurahua y el día 23 de diciembre en un avión QUEST KODIAK a los volcanes Cayambe y Cotopaxi, siguiendo las rutas que se muestra en la Figura 1.

Publicado en Volcanes

El día 17 de octubre del año en curso fue posible realizar un sobrevuelo de monitoreo a los volcanes activos Cotopaxi y Tungurahua, como parte del monitoreo continuo que efectúa el Instituto Geofísico, en coordinación con el Ministerio Coordinador de Seguridad quién apoyó logísticamente con un sobrevuelo en un avión de la Fuerza Aérea Ecuatoriana (TWIN OTTER, FAE-448), desde el aeropuerto de Latacunga en la Prov. de Cotopaxi, siguiendo la ruta que se muestra en la Figura 1.

Sobrevuelo 2016-10-17

Figura 1: Ruta del vuelo efectuado el 17 de octubre de 2016 (Base: Google Earth).

 

VOLCÁN COTOPAXI
Observaciones visuales
Las condiciones bajo las cuales se efectuó el vuelo fueron favorables, ya que el volcán se encontraba mayormente despejado. Durante la aproximación se observó que del cráter se emitía de forma pulsátil, una columna de gas sin contenido de ceniza y muy poco energética, misma que no superaba el borde del cráter del volcán (Figura. 2).

Sobrevuelo 2016-10-17

Figura 2: Vista del volcán Cotopaxi desde el suroriente. (Foto: P. Ramón - IG/EPN)).

 

Al llegar al volcán se pudo notar que se habían producido recientes caídas de nieve, las cuales suavizaban la topografía anterior del glaciar, sin embargo no se observó en el mismo los rasgos de deterioro que habían sido evidentes a finales del año 2015, luego de la actividad eruptiva del 14 de agosto del mismo año; es decir, las grietas aparentemente no se están haciendo más grandes y tampoco han incrementado su número. En el flanco occidental del volcán se pudo apreciar que se habían generado una serie de deslizamientos o desprendimientos, ocasionados por la fusión del glaciar, producto del cambio de albedo de la ceniza re-depositada por la remoción eólica de la misma; estos deslizamientos no alcanzan mayores distancias y se restringen a una altura aproximada de 5200 msnm (Figura. 3).

Por otro lado, a diferencia de lo que se observó a partir del vuelo efectuado el 3 de septiembre 2015, en esta oportunidad ya no se verificó la presencia de agua y humedad saliendo de los frentes de las lenguas terminales del glaciar, ni tampoco de los delgados hilos de agua descendiendo por los flancos (Fig. 2); posiblemente indicando que el incremento de fusión de los glaciares ya no está ocurriendo al momento o que este es mucho menor.

Sobrevuelo 2016-10-17

Figura 3: Glaciares del flanco occidental, nótese la remoción de material volcánico (ceniza) anterior. (Foto: M. Almeida - IG/EPN)).

 

Monitoreo Térmico
Las condiciones de vuelo permitieron efectuar imágenes térmicas de la mayoría de anomalías termales reconocidas en el volcán. De manera general las imágenes térmicas muestran que los flancos superiores del volcán se encuentran a temperaturas inferiores a lo que se observaba en meses anteriores (Fig. 4). Al igual que lo observado durante los vuelos del 31 de agosto y 3 de septiembre de 2015, en esta oportunidad también fue posible observar en las imágenes térmicas, las pequeñas anomalías en los flancos E y SE, la más caliente mostró una TMA = 20,1 °C y que seguramente corresponden a actividad fumarólica (Fig. 4). Las anomalías térmicas en los flancos del volcán fueron más claras en el flanco oriental con valores TMA variables entre 21,6 °C y 39,1 °C, para el flanco sur la mayor TMA calculada fue de 38,4 °C (Fig. 5). Las temperaturas máximas aparentes (TMA) medidas en el interior del cráter están relacionadas a los gases calientes que se emiten desde el interior del vento cuya TMA medida es de 96,6 °C (Figs. 4 y 5). En conclusión, se estima que las temperaturas en los flancos del volcán han disminuido respecto a los meses anteriores (Fig. 5); lo cual estaría ocasionando que el incremento de la fusión del glaciar, por arribo de fluidos calientes a la superficie del edificio, haya disminuido o se haya detenido.

Sobrevuelo 2016-10-17

Figura 4: Fila Superior: Fotografía e imagen térmica del flanco sur y oriental del volcán Cotopaxi. Fila Inferior: Fotografía e imagen térmica del cráter del volcán, donde se puede apreciar la débil columna de gas al momento del sobrevuelo; las zonas de color amarillo intenso representan mayor temperatura. (Fotografía e Imagen: M. Almeida, P. Ramón - IG/EPN).

 

Sobrevuelo 2016-10-17

Figura 5: Temperaturas de las diversas anomalías en el edificio del Cotopaxi, tomadas durante los últimos meses.

 


VOLCÁN TUNGURAHUA

Observaciones visuales
El volcán se mostró despejado en su parte alta, lo cual permitió la observación directa y la obtención de imágenes térmicas en la zona del cráter (Figura. 6). No se observó actividad en ninguno de los campos fumarólicos.

Sobrevuelo 2016-10-17

Figura 6: Volcán Tungurahua visto desde el suroccidente. (Foto: M. Almeida - IG/EPN).

 

Monitoreo Térmico
En el análisis de las imágenes térmicas se pudo identificar la mayor parte de las anomalías del cráter del volcán. Los valores de temperatura máxima aparente (TMA) más elevados se localizaron en la zona del cráter interno (TMA = 51,3 °). Las fumarolas del borde suroccidental y sur presentaron valores de TMA de 31,9 °C y 38,2 °C respectivamente. En los campos fumarólicos localizados en el borde interno de la cumbre máxima al norte del volcán, se pudieron calcular TMA variables entre 37,1 °C y 22,6 °C. Todos estos valores son están relacionados más que nada con la actividad fumarólica que el volcán presente en este estado de su actividad (Figura. 7).

Sobrevuelo 2016-10-17

Figura 7: Izquierda: Borde interno del cráter visto desde el noroccidente del volcán, derecha: imagen térmica que muestra en color amarillo las zonas de mayor temperatura en el cráter. (Fotografía e imagen: M. Almeida - IG/EPN).

 

MA, PR
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

El 10 de mayo de 2016, el Instituto Geofísico de la Escuela Politécnica Nacional (IGEPN) con el apoyo de la empresa ALAS DE SOCORRO (ADS) del Ecuador, realizó un sobrevuelo al volcán Cotopaxi con la finalidad de visualizar la actividad superficial y anomalías termales presentes, relacionadas a su actividad actual.

Durante el vuelo, el volcán se presentó despejado con una columna leve de emisión de gases (600 m, aprox.) sin contenido de ceniza que se dirigía hacia el norte y nor-occidente. Los glaciares permanecen agrietados y algunos cubiertos con una importante capa de nieve; sin embargo, el fenómeno de fusión del glaciar como se lo ha visto en los meses pasados, ha disminuido considerablemente. El control de anomalías térmicas ha reflejado una disminución leve en la temperatura asociada a la actividad fumarólica en los flancos del volcán (p.e., Fumarola flanco sur, TMA: 35,5°C).

Sobrevuelo al volcán Cotopaxi realizado el 10 de mayo de 2016

Figura 1. Fotografías tomadas durante el sobrevuelo. (Marco Almeida - IGEPN).

El volcán Cotopaxi presenta un nivel de actividad interna considerada como MODERADA con tendencia descendente (Informe Especial Cotopaxi N. 5).

MA, PR
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

Gracias a la gestión de la SGR, Zona 3, el día sábado 20 de febrero se efectuó un sobrevuelo al volcán Chimborazo, con objeto de identificar la causa y posibles zonas potenciales de generación de flujos de lodo y escombros por deshielos, además se solicitó la participación de personal técnico del IG para que efectúe monitoreo del volcán con cámara térmica. El vuelo se efectuó en una nave Twin Otter de la FAE (452), se despegó del aeropuerto de la ciudad de Latacunga alrededor de las 09:10 y se mantuvo la ruta que se indica en la figura 1.

Equipo franco-ecuatoriano colocó un GPS en la cima del volcán Chimborazo

Figura 1: Ruta seguida (rojo) durante el sobrevuelo del 20 de febrero al volcán Chimborazo.

 

Durante la aproximación al volcán se verificó que el mismo se encontraba despejado parcialmente, ya que un techo de nubes por debajo de los 4300 msnm cubría la parte inferior del volcán e impedía ver el efecto de los flujos de lodo ocurridos anteriormente en el sector de Chuquipogyo (Fig. 2).

Equipo franco-ecuatoriano colocó un GPS en la cima del volcán Chimborazo

Figura 2: Vista del flanco W del volcán Chimborazo, las nubes bajo la cota 4300 msnm ocultan el sector de Chuquipogyo (Foto: P. Ramón IG/EPN).

 

Del análisis de las imágenes obtenidas con la cámara infrarroja por el personal del IG, se concluye que no se encontraron anomalías termales en los flancos superiores del volcán (Fig. 3) y que podrían indicar una posible actividad del volcán, por lo que se puede indicar que el fenómeno que está ocasionado la fusión de los glaciares no está relacionado con un incremento de la temperatura de la superficie del terreno por actividad volcánica.

Equipo franco-ecuatoriano colocó un GPS en la cima del volcán Chimborazo

Figura 3: Imagen térmica de los flancos superiores S y SE del volcán, no se observan anomalías termales (Imagen: P. Ramón IG/EPN).

 

De igual manera las imágenes térmicas efectuadas en el glaciar N° 13, a partir del cual, según los informes del INAMHI (Cáceres B., com. Personal) se produce un colapso de la  morrena frontal dando lugar a la evacuación repentina de agua acumulada al interior del glaciar, lo que a su vez produjo los deslizamientos y flujos que luego han afectado a las comunidades ubicadas aguas abajo, no muestran la presencia de anomalías termales que indicarían una actividad volcánica que podría producir el incremento de temperaturas en esa zona (Fig. 4).

Equipo franco-ecuatoriano colocó un GPS en la cima del volcán Chimborazo

Figura 4: Imagen térmica de la zona cercana al glaciar N°13. No se observan anomalías termales (Imagen: P. Ramón IG/EPN).

 

Hacia el final del vuelo, la parte del volcán sobre la llanura de inundación en la Q. Yambo Rumi se despejó parcialmente dejando ver el cauce excavado en la morrena glaciar por los deslizamientos y flujos ocurridos en días anteriores (Fig. 5). No se evidenció la presencia de flujos que estuvieran descendiendo al momento de la observación o de depósitos de flujos recientes.

Equipo franco-ecuatoriano colocó un GPS en la cima del volcán Chimborazo

Figura 5: Sobre la llanura de inundación en la Q. Yambo Rumi se observa el cauce excavado en la morrena glaciar por los deslizamientos y flujos ocurridos en días anteriores (Imagen: M. Almeida IG/EPN).

 

PR
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

Como parte del monitoreo volcánico, Técnicos del Instituto Geofísico de la Politécnica Nacional con la ayuda logística de la empresa Alas de Socorro de Ecuador realizaron un sobrevuelo en la avioneta CESSNA 206 – Turbo, a los volcanes Tungurahua y Sangay, para realizar control de cambios geo-morfológicos en sus edificios volcánicos así como para capturar imágenes térmicas y recolectar datos de gases producto de su actividad superficial; estos volcanes se encuentran activos en erupción.

Sobrevuelo a los volcanes Tungurahua y Sangay el 5 de noviembre de 2015

Figura 1: La fotografía del flanco N-NE del volcán muestra los campos fumarólicos y la emisión de gas, a la derecha la imagen térmica muestra las zonas con mayor temperatura media aparente las más altas registradas en el volcán Tungurahua durante el último sobrevuelo son de TMA: 171,9 °C (Foto e imagen: M. Almeida IG/EPN).

 

Sobrevuelo a los volcanes Tungurahua y Sangay el 5 de noviembre de 2015

Figura 2: Foto del flanco W-SW del volcán donde se puede apreciar actividad fumarólica con temperatura promedio de TMA: 44,5 °C. (Foto e imagen: M. Almeida IG/EPN).

 

Sobrevuelo a los volcanes Tungurahua y Sangay el 5 de noviembre de 2015

Figura 3: Control de imágenes térmicas; al fondo y derecha de la foto el volcán Sangay (Foto: Johnny García – IG/EPN).

 

Sobrevuelo a los volcanes Tungurahua y Sangay el 5 de noviembre de 2015

Figura 4: Técnicos del Instituto Geofísico de izquierda a derecha en la foto: Ing. Francisco Vásconez, Johnny García, Marco Almeida, Cap. Chad Irwin Jefe de Operaciones de Alas de Socorro Ecuador.

 



Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Comunidad

El día 29 de septiembre, con el apoyo logístico de una aeronave por parte del MICS, se efectuó un sobrevuelo desde el aeropuerto de Tababela en dirección a los volcanes Cotopaxi y Tungurahua, en un avión Twin Otter de la FAE (452), siguiendo la ruta que se muestra en la Figura 1.

Resumen de las observaciones efectuadas durante el sobrevuelo a los volcanes Cotopaxi y Tungurahua del día 29 de septiembre de 2015

Figura 1: Ruta del vuelo efectuado el 29 de Septiembre de 2015 (Base: Google Earth).


VOLCÁN COTOPAXI

Observaciones visuales
Durante la aproximación al volcán Cotopaxi se pudo apreciar que el volcán se encontraba parcialmente despejado, se observó una columna de emisión que se elevaba alrededor de unos 1000 m sobre el cráter y luego se dirigía hacia el W. Una vez que se arribó al sector del volcán se observó que la emisión consistía en una columna de vapor de agua con un contenido bajo a nulo de ceniza. Dado que la emisión se manifestaba de manera pulsátil, hubo momentos en los que se podía observar el fondo del cráter, y por tanto se hicieron imágenes térmicas y digitales de esta zona, por primera vez desde que se inició la actividad, luego del 14 de agosto.

Una vez más se pudo confirmar lo observado en ocasiones anteriores, esto es la presencia de agua y humedad en el contacto de los glaciares con la superficie del terreno, desde donde se forman delgados hilos de agua, los que descienden por el flanco hasta los drenajes principales del volcán.  En informes anteriores también se mencionó que estos deshielos posiblemente podrían generar pequeños lahares secundarios. Nuevamente se observó que varias de las lenguas terminales de los glaciares se encuentran cruzadas de grietas y con evidencias de avance de los glaciares, debido muy probablemente a la fusión de los mismos. En la parte superior del glaciar del flanco S se observaron muchas zonas que aparentemente están experimentando derrumbes del glaciar (Fig. 2).

Resumen de las observaciones efectuadas durante el sobrevuelo a los volcanes Cotopaxi y Tungurahua del día 29 de septiembre de 2015

Figura 2: Notar las pequeñas zonas de color más claro, las que aparentemente representan sitios donde se derrumba el glaciar. (Foto: S. Vallejo IG/EPN).

En el flanco superior oriental se observó que el glaciar de esa zona ha experimentado una rápida fusión, lo cual ha provocado que se produzca caída de material desde la parte superior hacia el glaciar inferior, por lo que ahora presenta un color oscuro. Se debe indicar que ese material no estaba presente anteriormente cuando se hicieron las observaciones del vuelo del 15 de septiembre; tampoco se trata de ceniza, ya que las caídas de ceniza no se produjeron hacia esta zona del volcán (Fig. 3).

Resumen de las observaciones efectuadas durante el sobrevuelo a los volcanes Cotopaxi y Tungurahua del día 29 de septiembre de 2015

Figura 3: Glaciar del flanco E, la fusión del glaciar superior y del borde del cráter provoca desprendimientos de material rocoso hacia el glaciar inferior, por lo que se presenta de color oscuro. (Foto: S. Vallejo IG/EPN).

 

Monitoreo Térmico
Las buenas condiciones climáticas permitieron hacer medidas de temperatura de la mayoría de anomalías térmicas identificadas en el volcán. Lo más rescatable fue poder observar los cambios en el cráter interno, en donde se identificó claramente un vento que tiene varios cientos de profundidad con respecto a la cumbre, cuya base no pudo ser estimada debido a su gran profundidad, a pesar de ello se tomaron medidas de temperatura máxima aparente (TMA) del cráter interno así como de las emisiones pulsátiles observadas durante el sobrevuelo.  Los valores de TMA más altos correspondieron a las partes altas de las emisiones de gases y cuyo valor fue de 157,7°C, Figura 4. Este valor es menor al medido el 3 septiembre en donde se obtuvo un valor de 200,3°C, Tabla 1.

Resumen de las observaciones efectuadas durante el sobrevuelo a los volcanes Cotopaxi y Tungurahua del día 29 de septiembre de 2015

Figura 4: Sup.: Imagen térmica que muestra una TMA de 157,7°C y que corresponde a la parte superior de una emisión. Inf.: Se muestra por primera vez la evidencia de la formación del vento formado en el presente período eruptivo (Imagen/Fotografía: S. Vallejo IG/EPN).

Con respecto a los campos fumarólicos se determinó que los valores de TMA se mantienen altos en un rango de 40 a 60°C. Esta intensa actividad fumarólica en la mayoría de los campos continúa generando la precipitación y depositación de minerales posiblemente azufre de coloración verdosa), Figura 4 y 5. Además se ha podido evidenciar que las áreas de dichos campos continúan aumentando, generando así que únicamente una parte reducida de glaciar se mantenga en las partes altas externas del cráter

Resumen de las observaciones efectuadas durante el sobrevuelo a los volcanes Cotopaxi y Tungurahua del día 29 de septiembre de 2015

Figura 5: Izq.: Imagen térmica que muestra una TMA de 157,7°C y que corresponde a la parte superior de una emisión. Der.: Se muestra por primera vez la evidencia de la formación del vento formado en el presente período eruptivo (Imagen/Fotografía: S. Vallejo IG/EPN).

Durante el presente sobrevuelo se identificaron nuevas zonas anómalas, las mismas que están relacionadas a los sectores en donde se ha depositado el material removilizado de las partes altas del cráter externo. Estas zonas han alcanzado un valor de TMA de 24°C, Figura 2 y 5. Cabe indicar que toda la parte alta y media del glaciar se encuentra cubierta por este material, ayudando así al proceso de ablación en el glaciar.

Resumen de las observaciones efectuadas durante el sobrevuelo a los volcanes Cotopaxi y Tungurahua del día 29 de septiembre de 2015

Figura 6. Imagen térmica que muestra la nueva anomalía que corresponde a los sectores que son depósitos de material removilizado ubicados en las partes altas del cráter externo. (Imagen/Fotografía: S. Vallejo IG/EPN).

Los valores de TMA de las anomalías térmicas identificadas se encuentran en la Tabla 1, cabe resaltar que las temperaturas presentan valores altos y se acercan a su máximo medido entre los años 2002 y principios del 2015.

Resumen de las observaciones efectuadas durante el sobrevuelo a los volcanes Cotopaxi y Tungurahua del día 29 de septiembre de 2015

Tabla 1: Cuadro que muestra los valores de temperatura máxima aparente (TMA) de las diferentes anomalías térmicas identificadas en el volcán Cotopaxi, en amarillo los valores correspondientes al sobrevuelo efectuado el 22 de septiembre del 2015.

 

Conclusiones
El monitoreo termal y las observaciones visuales que se vienen efectuando desde el 18 de agosto tienden a indicar que los glaciares del volcán Cotopaxi se encuentran sujetos a un proceso de fusión, el mismo que se nota es más acelerado en las últimas semanas. El origen de este fenómeno se estima que está asociado al arribo de fluidos calientes a la superficie del edificio volcánico, los mismos que posiblemente se originan en un cuerpo magmático que se encuentra bajo el volcán y que producen el calentamiento que finalmente da lugar a la fusión de los glaciares. Se estima también que la presencia de la ceniza en los flancos del volcán da a lugar a una disminución del albedo de la ceniza y por tanto a un incremento de su temperatura, contribuyendo igualmente a la fusión del glaciar.

La fusión del glaciar produce varias manifestaciones, como la aparición de nuevas grietas en los flancos superiores y de una gran cantidad de fisuras y grietas en las lenguas terminales de los glaciares. Esto último parecería indicar que se produce un avance de los glaciares aguas abajo en los drenajes y que dependiendo de la pendiente este fenómeno podría acelerarse y eventualmente dar lugar a un colapso del glaciar, generando el posible descenso de flujos de lodo. También se ha observado el desprendimiento de material desde los bordes del cráter donde se ha fundido el glaciar, dando lugar a la presencia de material de color oscuro en los flancos superiores del E del volcán. Las imágenes térmicas también han revelado la presencia de anomalías termales en varias zonas de los glaciares y que en varios casos se ha podido verificar que están asociados a nueva actividad fumarólica.

En vista de que este fenómeno de fusión de los glaciares del volcán puede dar lugar a situaciones peligrosas, es necesario efectuar una evaluación de estas nuevas amenazas y que hasta el momento no eran claramente conocidas.

Con la presente actividad y la evidencia de una fuente de alta temperatura a una considerable profundidad es posible ver brillo en las columnas de emisión de gases a nivel del cráter. El brillo puede ser el resultado del reflejo de la incandescencia del magma en profundidad en los gases de la emisión. Una fotografía difundida en días pasados en redes sociales, capturó este brillo, lo que nos indica que este fenómeno no es reciente, pero que el mismo no está relacionado con una fuente de magma en superficie.


VOLCAN TUNGURAHUA

Observaciones visuales
A pesar de que en horas de la mañana, el volcán Tungurahua se mantuvo despejado, cuando se arribó al mismo, éste se encontraba en gran parte nublado. El sector de la cumbre estaba cubierto de nieve debido a las precipitaciones de los días anteriores. Desde el cráter interno se observó la emisión de una continua columna de vapor de agua que se movía hacia el SW.

Bajo el sector del borde occidental del cráter se observó la presencia de varias fumarolas activas y que han sido reportadas recientemente por el personal del OVT/IG.  Este es un campo fumarólico ubicado a pocos metros bajo el borde del cráter, donde se observó la emisión de vapor de agua y gases desde las mismas y además depósitos de color claro asociados a su actividad fumarólica (Figura 7). Bajo el borde SW del cráter igualmente se observó la presencia de fumarolas activas y de depósitos de color amarillo claro, igualmente asociados a la actividad de dichas fumarolas (Figura 7).

Resumen de las observaciones efectuadas durante el sobrevuelo a los volcanes Cotopaxi y Tungurahua del día 29 de septiembre de 2015

Figura 7: Vista de los flancos W y SW del volcán Tungurahua. Notar la presencia de fumarolas en el flanco W y en el flanco S. (Foto: S. Vallejo IG/EPN).
Monitoreo Térmico.

Debido a la emisión continua de gases no se pudieron hacer medidas de temperatura del fondo del cráter. El valor mayor de TMA corresponde a la pared del cráter interno con 88,7°C, mientras que para los campos fumarólicos nor oriente (elipse roja) y sur occidente (elipse blanca) se tuvieron valores de 36,2°C y 40,1°C, Figura 8.

Resumen de las observaciones efectuadas durante el sobrevuelo a los volcanes Cotopaxi y Tungurahua del día 29 de septiembre de 2015

Figura 8: Izq. Imagen térmica del volcán Tungurahua vista desde el nor oriente, muestra el cráter con una leve emisión y sus dos campos fumarólicos al exterior del cráter. Der. Fotografía correspondiente, se observan los dos campos fumarólicos activos. (Foto: S. Vallejo IG/EPN).

PR, SV, MA
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

Debido a las buenas condiciones climáticas en el sector del volcán Cotopaxi se procedió a realizar un sobrevuelo con el Ministro Coordinador de Seguridad (MICS), el Señor César Navas, en un avión Twin Otter de la FAE (452) gracias al apoyo logístico del MICS.  El objetivo principal fue realizar monitoreo visual, térmico y de gases para determinar si se han generado cambios importantes con respecto a los medidos en sobrevuelos anteriores. La Figura 1 muestra la trayectoria que se siguió durante el sobrevuelo.

Resumen de las observaciones efectuadas durante el sobrevuelo al volcán Cotopaxi del día 27 de septiembre de 2015

Figura 1: Ruta del vuelo efectuado el 27 de Septiembre de 2015 (Base: Google Earth).


Observaciones visuales
En tempranas horas de la mañana el volcán se encontraba totalmente despejado, sin embargo durante la aproximación se observó que una densa capa de nubes empezaba a cubrir el volcán. A pesar de ello se pudo identificar una emisión de gases sin contenido de ceniza muy poco energética que se dirigía hacia el occidente a la altura del cráter, Figura 2.

De la misma manera la mayoría de las zonas anómalas estuvieron cubiertas de nubes y emisión lo que impidió tener una buena apreciación de las medidas de temperatura.

Resumen de las observaciones efectuadas durante el sobrevuelo al volcán Cotopaxi del día 27 de septiembre de 2015

Figura 2: Fotografía que muestra la emisión de gases a nivel del cráter con una dirección al occidente (Foto: S. Vallejo, IG-EPN).

Con respecto a las observaciones del glaciar se pudo notar que las fisuras continúan tanto en las fases terminales del glaciar como en las partes altas del mismo, además se pudo comprobar que los desprendimientos de glaciar continúan.  Se puede notar también la generación de pequeños drenajes de agua en las en el contacto del glaciar con la roca, lo que podría alimentar la presencia de flujos de lodo secundarios Figura 3. En especial se pudo notar la presencia de bloques de glaciar en las partes altas del sector de Yanasacha que se encontrarían basculados y próximos a derrumbarse como se ha venido observando en las últimas semanas, Figura 4.

Resumen de las observaciones efectuadas durante el sobrevuelo al volcán Cotopaxi del día 27 de septiembre de 2015

Figura 3: Grietas y pequeños drenajes de agua que podrían alimentar flujos de lodo secundarios (Foto: S. Vallejo, IG-EPN).

Resumen de las observaciones efectuadas durante el sobrevuelo al volcán Cotopaxi del día 27 de septiembre de 2015

Figura 4: Bloques de glaciar sobre el sector de Yanasacha que podrían derrumbarse como ya se ha observado en semanas anteriores, elipse anaranjada (Foto: S. Vallejo, IG-EPN).


Monitoreo Térmico
La nubosidad presente en los flancos norte, este y sur impidieron obtener imágenes térmicas de las zonas anómalas en las partes altas del volcán. Sin embargo se pudo notar que la temperatura máxima aparente (TMA) de todo el volcán corresponde al campo fumarólico del sur oriente y cuyo valor corresponde a 37,8°C, Figura 5.  La TMA de la pluma corresponde a un valor de 8,2 significando que la emisión se enfría al llegar al contacto con la superficie.

Resumen de las observaciones efectuadas durante el sobrevuelo al volcán Cotopaxi del día 27 de septiembre de 2015

Figura 5: Izq, Imagen térmica que muestra el valor más alto de TMA que fue registrado en el presente sobrevuelo y cuyo valor corresponde a 37,8°C, Der, fotografía correspondiente que además muestra la emisión poco energética a la altura del cráter y que se dirigía hacia el occidente. (Foto: S. Vallejo, IG-EPN).

Los valores de TMA que pudieron medirse en el volcán se encuentran en la Tabla 1 cuyos valores se encuentran dentro del rango de temperaturas medidos entre los años 2002 y principios del 2015.  Se insiste en que estos valores pueden verse opacados por la continua presencia de la emisión de gases así como de la nubosidad durante el sobrevuelo.

Resumen de las observaciones efectuadas durante el sobrevuelo al volcán Cotopaxi del día 27 de septiembre de 2015

Tabla 1: Valores de temperatura máxima aparente (TMA) de las diferentes anomalías térmicas identificadas en el volcán Cotopaxi, en amarillo los valores correspondientes al sobrevuelo efectuado el 27 de septiembre del 2015.


Monitoreo de gases
Durante el sobrevuelo se pudieron hacer travesías a través de la pluma debido a que su contenido de ceniza era nulo. Esto permitió obtener medidas de SO2, CO2 y H2S usando el instrumento multigas. Se cruzó la pluma a una altura de 5800 m y los resultados preliminares se describen a continuación:

-  El contenido de SO2, dentro de las especies gaseosas de S, en la pluma fue mayor a 99%, alcanzando el H2S un máximo de 1%.
-  La relación de CO2/SO2 estuvo alrededor de 1.0 to 2.5

El valor de especiación del azufre indican que probablemente los gases se equilibran con el magma a temperaturas entre ~800 to 1100 C y a una profundidad menor de 5 km.  
 

SV, MA, SH, PK
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

El 18 de agosto del presente se efectuó un sobrevuelo con el objetivo de realizar un monitoreo térmico del volcán Cotopaxi.  A continuación se resumen los resultados obtenidos.
Se despegó desde el aeropuerto de Tababela en dirección al volcán Cotopaxi, en un avión Twin Otter de la FAE (452), siguiendo la ruta que se muestra en la figura 1.

Informe Sobrevuelo 18/08/2015

Figura 1: Ruta del vuelo efectuado el 18 de Agosto de 2015 (Base: Google Earth).

Durante la aproximación al volcán se apreció una emisión continua de vapor de agua con contenidos de ceniza variables en el tiempo. La emisión rellenaba en su totalidad el cráter del volcán, la salida de la emisión era muy poco energética, por lo que no se elevaba más de un centenar de metros sobre el cráter y luego, por acción de los vientos predominantes, se dirigía hacia el occidente y descendía por sobre el flanco occidental del volcán (Fig. 2).

Informe Sobrevuelo 18/08/2015

Figura 2: Foto del flanco N y NE del volcán. La totalidad del cráter está rellenada por una emisión de baja energía, principalmente de vapor de agua y que se dirige hacia el Occidente y desciende por el mismo flanco del volcán. En primer plano se observa la pared de Yanasacha al N del volcán (Foto: P. Ramón IG/EPN).

Desde que el día 17 de agosto se iniciaron las explosiones y emisiones en el volcán, cantidades importantes de ceniza han sido depositadas sobre los glaciares de los flancos del volcán, las mismas que pudieron ser observadas claramente durante el vuelo y que cubren una zona que va desde la cumbre al norte, descendiendo por el flanco nor-occidental; hasta un sector que viene desde la cumbre sur, y desciende luego por el flanco sur-occidental (Fig. 3).

Informe Sobrevuelo 18/08/2015

Figura 3: Foto en la que se observa en color gris oscuro el glaciar cubierto por ceniza en los flancos NW, W y SW (Foto: P. Ramón IG/EPN).

En varias zonas de la parte superior de algunos glaciares se pudo apreciar la presencia de nuevas grietas, principalmente en los flancos E y NE y se observó también algunos desprendimientos de rocas, posiblemente recientes, en el sector de Yanasacha. Por otro lado, a pesar de que las emisiones impidieron observar hacia el interior del cráter la mayor parte del tiempo, en un momento dado fue posible observar la zona SW del mismo parcialmente despejada; las evidencias de las imágenes visible e infrarroja parecerían indicar que ya no está presente, por lo menos en esta zona del cráter, el glaciar circular (dona) que fue visible hasta antes del 17 de agosto (Fig. 4).

Informe Sobrevuelo 18/08/2015

Figura 4: A la izquierda, el círculo rojo indica la zona donde anteriormente se ubicaba el glaciar interno. A la derecha se muestra una imagen térmica que muestra la zona del cráter, el círculo blanco indica la zona donde se esperaba encontrar temperaturas correspondientes al glaciar, pero que sin embargo mostraron temperaturas mayores a las esperadas (Foto e imagen: P. Ramón IG/EPN).

De las mediciones efectuadas con la cámara térmica se concluye que no se encontraron temperaturas magmáticas en los flancos exteriores del volcán, la presencia de las emisiones al interior del cráter impidieron poder obtener medidas reales de las temperaturas al interior del cráter. Las temperaturas medidas se detallan en la tabla 1 y las zonas en las que han sido medidas se muestran en la figura 5.

Informe Sobrevuelo 18/08/2015

Tabla 1: Valores de temperatura medidas con la cámara térmica en diferentes zonas del volcán.

Informe Sobrevuelo 18/08/2015

Figura 5: En la foto aérea vertical del volcán se muestran las zonas del volcán Cotopaxi y donde se han efectuado mediciones termales regularmente desde el año 2002.

En conclusión se puede indicar que las mediciones con la cámara térmica no mostraron temperaturas magmáticas. La máxima temperatura aparente fue medida en el flanco sur del volcán, con un valor de 41.3 °C, el mismo que se ubica dentro del rango de temperaturas medidas en el período 2002 a 2015 y lo cual tiende a confirmar el nivel de la actividad que al momento experimenta el volcán.

PR,SV,MA
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes
Página 2 de 2