Actualización del estado del volcán Cotopaxi

Resumen
A la fecha de hoy, 29 de mayo, el volcán Cotopaxi se encuentra en erupción por más de 7 meses; superando en duración al periodo del 2015 que se extendió por aproximadamente 4 meses. Desde marzo del presente año, el fenómeno eruptivo más frecuente continúa siendo la emisión de gases y ceniza, con un número menor a lo registrado entre diciembre de 2022 y febrero 2023. Entre los meses de marzo, abril y lo que va de mayo se han contabilizado 13, 18 y 9 emisiones respectivamente con alturas máximas de 2600 metros sobre el nivel de la cumbre y que han generado caídas de ceniza esporádicas en los cantones de Latacunga y Mejía, pero principalmente dentro del Parque Nacional Cotopaxi.

Desde finales del mes de febrero de 2023 se viene observando una fluctuación en las tendencias de los parámetros de vigilancia, tanto en la actividad interna como en la superficial. A nivel interno, el cambio está marcado principalmente por una variación en la cantidad de sismos diarios (tremores: asociados a emisiones de ceniza y LP’s: asociados a movimiento de fluidos) y la desaceleración de la deformación. A nivel superficial, el cambio se ve reflejado, entre otros, por la variación en el flujo y masa de dióxido de azufre (SO2) emitidos por el volcán a la atmósfera. Sin embargo, respecto a la tasa de emisiones de ceniza, alcance y la cantidad de ceniza emitida, han decrecido. En general los parámetros de vigilancia muestran que la actual erupción del Cotopaxi es de origen magmática y que en los últimos tres meses ha sido fluctuante, con una disminución en su intensidad, sin que alcance los niveles de base anteriores a octubre 2022.

La evolución de esta actividad a mediano plazo es incierta, debido a la naturaleza misma de los fenómenos volcánicos. Sin embargo, ahora se considera que el escenario más probable a corto plazo (días a semanas) es que las emisiones de ceniza sean cada vez menos frecuentes, menos energéticas y que en forma general la intensidad de la erupción siga disminuyendo progresivamente. Se recalca la importancia de mantener activo el sistema de vigilancia y continuar con las tareas de prevención asociadas a los escenarios eruptivos planteados para el volcán Cotopaxi. El IG-EPN se mantiene atento en caso de ocurrir cambios en las condiciones del volcán para poder ofrecer información oportuna a las autoridades y población en general.

Informe Volcánico Especial Cotopaxi No. 2023-003
Emisión de gases del volcán Cotopaxi. La fotografía fue tomada durante un sobrevuelo provisto por la Fuerza Aérea Ecuatoriana el día 17 de mayo de 2023 (Foto: S. Hidalgo).


Anexo técnico-científico

Sismicidad
Desde mediados de febrero de este año, el Cotopaxi ha mostrado una disminución progresiva en todos los parámetros sísmicos, incluyendo: tasa de eventos, número de emisiones de ceniza y horas diarias acumuladas de tremor de emisión. Esta es una tendencia reportada en el Informe Especial N° 2023–002, y la cual continúa hasta el día de hoy. En la Figura 1, se puede ver la evolución de las amplitudes de los eventos de “tremor de emisión” en el tiempo.

Informe Volcánico Especial Cotopaxi No. 2023-003
Figura 1: Amplitud sísmica, medida en nanómetros por segundo (nm/s), corregidas por distancia a la fuente, y promediada en todas las estaciones disponibles de la red sísmica del 01 febrero 2023 hasta 23 de mayo 2023. El eje vertical es logarítmico. Nótese que cada episodio de tremor de emisión muestra una duración más corta comparado con episodios registrados en febrero de este año.


Informe Volcánico Especial Cotopaxi No. 2023-003
Figura 2: (A: arriba) Evolución de las horas diarias acumuladas de tremor. Desde mediados de marzo hay pocos días en los que el tremor supere las 5 horas de duración. (B: abajo) Tasa diaria de eventos localizados alrededor del Cotopaxi, de magnitud ≥ 0,6. Los datos se promediaron sobre ventanas de 30 días. Desde mediados de marzo, la tasa de eventos se ha mantenido alrededor a 1 evento diario.


En la Figura 2 (A y B) se observa además cómo evoluciona el número diario acumulado de horas de tremor de emisión y la tasa de eventos localizables a lo largo del mismo periodo de tiempo. Tanto en la Figura 1 como en la Figura 2 el patrón es el mismo: los parámetros medibles decayeron gradualmente en unas semanas y desde mediados de marzo, se mantienen en un nuevo nivel de actividad más bajo comparado con lo registrado en febrero de este año.

Por su parte, la Figura 3 muestra la magnitud media de los eventos sísmicos localizados. Durante el mes de abril hasta mediados de mayo se observa un leve incremento respecto a los datos obtenidos hasta finales de marzo. Este ascenso, sin embargo, es menor al registrado durante el mes de febrero pasado, cuando el volcán mostró una de las etapas más intensas de este último episodio eruptivo, iniciado en octubre 2022. Este último incremento en la magnitud de los eventos pudiera ser una evidencia también para pensar que el actual episodio eruptivo pudiera aún prolongarse en el tiempo.

Informe Volcánico Especial Cotopaxi No. 2023-003
Figura 3: Magnitud media y sus intervalos de confianza de los eventos localizados alrededor del volcán Cotopaxi. Las muestras de puntos azules se diferencian significativamente (95% de confianza) de las muestras de puntos rojos.


Geodesia
Los procesos internos del volcán, como el ingreso de nuevo magma al sistema, producen un aumento de la presión y cambios en el estado de los esfuerzos al interior del sistema volcánico. Estos fenómenos se manifiestan a nivel superficial como deformación del edificio volcánico o sus alrededores, mismos que son detectables por medio de instrumentos de alta precisión.

En el 2022, las bases de monitoreo geodésico ubicadas alrededor del cono volcánico empezaron a registrar desplazamientos, indicando un aumento de varios milímetros en la distancia que separa a las bases entre sí. Este patrón, llamado “inflación” se mantuvo hasta el mes de febrero, cuando la deformación empezó a desacelerarse. Entre los meses de febrero y marzo, la deformación presentó una tendencia levemente descendente, para posteriormente estabilizarse.

Entre los meses de abril y mayo (periodo resaltado en color amarillo en la Figura 4), los datos de posicionamiento muestran un incremento de unos pocos milímetros en la sección oeste - este del volcán (Figura 4, cuadro superior). Sin embargo, en la sección norte – sur (Figura 4, cuadro inferior), de momento, la tendencia se mantiene relativamente estable.

Informe Volcánico Especial Cotopaxi No. 2023-003
Figura 4. Series temporales de deformación, obtenidas en base a datos de posicionamiento entre bases geodésicas del volcán Cotopaxi, entre enero de 2021 y mayo 2023. Superior: deformación en el eje longitudinal del edificio volcánico (oeste – este). Inferior: deformación en el eje latitudinal del edificio volcánico (norte - sur).


Nubes y caídas de cenizas
Desde octubre del 2022 se han registrado 138 emisiones de ceniza en el volcán Cotopaxi, utilizando el registro sísmico (tremor de emisión), las cuales fueron confirmadas con imágenes del satélite GOES-16 y del sistema de cámaras permanentes del IG-EPN. En la Figura 5 se observa que el pico de actividad fue alcanzado entre diciembre 2022 y febrero 2023, registrándose entre 27 y 38 emisiones de ceniza por mes. Por otra parte, los meses de marzo y abril se contabilizaron 13 y 18 emisiones de ceniza, respectivamente, lo que implica un descenso en la actividad eruptiva. Siguiendo la misma tendencia, hasta el 29 de mayo solamente se han registrado 9 emisiones de ceniza. Como consecuencia, la tasa actual de emisiones de ceniza del volcán Cotopaxi ha bajado a menos de una cada dos días (tasa diaria de 0,3).

Informe Volcánico Especial Cotopaxi No. 2023-003
Figura 5. Número de emisiones de ceniza en el volcán Cotopaxi desde octubre del 2022. El eje izquierdo marca el total de emisiones registradas cada mes (barras grises), mientras que el derecho indica la tasa diaria (línea negra, número de emisiones del mes dividido por el número de días). Para mayo se tomaron en cuenta las emisiones registradas hasta el día 29 del mes.


En paralelo, el Centro de Avisos de Cenizas Volcánicas de Washington (W-VAAC por sus siglas en inglés) ha publicado 177 reportes de nubes de ceniza desde el 21 de octubre de 2022. Los mayores alcances fueron observados por satélites para las nubes de ceniza asociadas a la actividad del 26 de noviembre, 20 de diciembre, 26 y 30 de enero, 10, 18 y 19 de febrero, y 28 de marzo; cuando se registraron plumas con más de 100 km de distancia desde el volcán. Por otro lado, las alturas máximas de las nubes de ceniza (mayor a 1.5 km sobre el cráter) fueron registradas los días 26 de noviembre, 13, 17, 19 y 30 de enero, 1 y 26 de febrero, 19 y 28 de marzo, 24 de abril, 18 y 26 de mayo. Debido a esta actividad, entre noviembre y febrero se reportó caída de ceniza leve desde varios sectores de los cantones Latacunga, Mejía, Rumiñahui y Quito; mientras que desde el mes de marzo solo se ha reportado caída leve de ceniza en sectores cercanos al volcán, en los cantones de Latacunga y Mejía, pero especialmente, en las faldas del volcán dentro del Parque Nacional Cotopaxi (Figura 6).

Informe Volcánico Especial Cotopaxi No. 2023-003
Figura 6. Izquierda: Proyección de las 127 alertas de la W-VAAC registradas entre el 21 de octubre 2022 y el 28 de febrero de 2023, con los reportes de caída de ceniza recibidos en este periodo a través del grupo de vigías del volcán Cotopaxi, el MAE y de los informes de la SGR (figuras negras). Derecha: Proyección de las 50 alertas de la W-VAAC registradas entre el 1 de marzo y el 29 de mayo de 2023 con los reportes de caída de ceniza recibidos en este periodo (figuras negras).


La masa total de las caídas de ceniza entre el 20 de abril y el 18 de mayo de 2023 está estimada cerca de 30 millones de kg (Figura 7), lo que representa una disminución del ~45% comparando con el periodo anterior (14 de marzo al 20 de abril de 2023).

La ceniza de estas caídas fue muestreada y el material recolectado fue preparado para los análisis correspondientes en el laboratorio del IG-EPN. En la Figura 8 se indica la evolución de los porcentajes ponderados de los componentes analizados en las fracciones de 0.18, 0.125 y 0.09 mm de la ceniza recolectada el 22 de octubre, 26 de noviembre, 20 de diciembre, 19 de enero, 8 de febrero, 17 de abril y 10 de mayo. Los resultados muestran un incremento marcado en el aporte del material juvenil (material asociado al magma que está generando la actividad volcánica en superficie) entre octubre 2022 y febrero 2023, mientras que, en abril y mayo, el contenido de material juvenil ha vuelto a disminuir ligeramente.

Informe Volcánico Especial Cotopaxi No. 2023-003
Figura 7. Masa de caída de ceniza en el volcán Cotopaxi para el periodo octubre 2022 - mayo 2023. Las barras de error corresponden a los resultados obtenidos por diferentes técnicos.


Informe Volcánico Especial Cotopaxi No. 2023-003
Figura 8. Evolución del contenido ponderado de material juvenil (material derivado del magma en erupción) en negro y material accidental (material volcánico viejo) en rojo, observado en las fracciones de 0.18, 0.125 y 0.09 mm de las muestras de ceniza recolectadas mensualmente. En la parte inferior se indican unos ejemplos de material juvenil (café, negro a gris brillante) y material accidental (opaco, oxidado).


Termografía
Durante el sobrevuelo realizado el 17 de mayo, se obtuvieron nuevas secuencias termales del volcán. En esta ocasión, las condiciones de actividad durante el vuelo (por ejemplo, baja cantidad de gas y ausencia de ceniza), permitieron la obtención de imágenes térmicas de alta resolución del fondo del cráter. Las Temperaturas Máximas Aparentes (TMA) obtenidas en esta zona, corresponden a las más altas registradas en el volcán desde marzo de 2018, en cuya fecha se midió 313 °C. La TMA promedio obtenida del análisis de diferentes secuencias termales para el 17 de mayo, es de 235 ± 39 °C (zona en color amarillo brillante en la Figura 9) y corresponde a la roca volcánica calentada por gases magmáticos a muy alta temperatura. En este sentido se debe considerar que la distancia y la presencia de gas en el conducto puede subestimar la temperatura. De igual manera, esta temperatura confirma que la actividad presentada por el volcán es de origen magmático. En los campos fumarólicos, las TMA aún son menores a 30 °C, es decir bajas.

Informe Volcánico Especial Cotopaxi No. 2023-003
Figura 9. Superposición de imagen térmica con imagen de rango visible, correspondiente al fondo del cráter del volcán Cotopaxi. Las zonas en colores anaranjado (temperatura baja) y amarillo brillante (temperatura alta), corresponden a rocas calentadas por gas a muy alta temperatura y no deben ser interpretados como lava volcánica en superficie (Foto: F Naranjo, Imagen Térmica: M Almeida; 17 de mayo de 2023 - IGEPN).


Por otra parte, en base al análisis del registro de imágenes infrarrojas, provenientes de la cámara fija ubicada alrededor de 10 km al noroccidente del volcán Cotopaxi, las medidas de las Temperaturas Máximas Aparentes (TMA) son relativamente bajas respecto a las calculadas en semanas anteriores, no obstante, las tendencias observadas desde el inicio del proceso eruptivo (octubre 2022) y hasta la última semana dentro de este período eruptivo muestran un incremento de unos pocos grados centígrados respecto a la tendencia de los valores que se vienen registrando hasta mayo de 2023 (Figura 10).

Informe Volcánico Especial Cotopaxi No. 2023-003
Figura 10. Izquierda: Campo de visión de la cámara infrarroja (IR) ubicada en el volcán Rumiñahui. El recuadro blanco en el área de análisis corresponde al campo fumarólico de Yanasacha. Derecha: Serie de datos temporales de las temperaturas máximas aparentes (TMA) del campo fumarólico Yanasacha, bajo la cumbre norte del volcán. En puntos rojos se representa los valores de las medidas máximas válidas registradas (entre las 18h00 y 06h00, noche y madrugada; reduciendo la incidencia de radiación solar) y en negro, el valor de la media móvil en un período de 3 días, donde se observa una tendencia gradualmente creciente para las últimas semanas.


Actividad superficial y desgasificación
La actividad superficial es vigilada a través de cámaras web y sensores satelitales (Figura 11A). Durante el mes de marzo se detectó una disminución en la ocurrencia de emisiones de ceniza. La tendencia registró un ascenso durante el mes de abril, pero volvió a disminuir durante el transcurso del mes de mayo. A nivel global, se observa una tendencia descendente en la ocurrencia de las emisiones de ceniza desde el mes de marzo en comparación a lo ocurrido en el periodo diciembre 2022 – febrero 2023 (Figura 11B). La altura máxima de las columnas de ceniza ha sido de hasta 2600 metros sobre el nivel del cráter en los últimos tres meses, siendo un poco menor a lo registrado en los meses precedentes. Asimismo, en los últimos 2 meses no se ha observado brillo en el cráter ni se han detectado alertas termales mediante sistemas satelitales (Figura 11B). Las emisiones de gas han mantenido sus alturas promedio entre 500 y 1000 metros sobre la cumbre, con ocasionales pulsos de hasta 3000 m (Figura 11B).

Informe Volcánico Especial Cotopaxi No. 2023-003
Figura 11. A. Serie temporal de las alturas máximas de las columnas de gas y ceniza observadas en el volcán Cotopaxi desde 2015 al presente. B. Ampliación a la actividad reciente desde el 1 de septiembre de 2022. Nótese la disminución de barras rojas, emisiones de ceniza, desde el mes de marzo.


La red DOAS (Espectroscopia de Absorción Óptica Diferencial), empleada para cuantificar el flujo de dióxido de azufre, SO2 (gas proveniente del magma) emitido por el volcán, ha registrado picos sucesivos de desgasificación desde finales de marzo. Estos picos han mostrado un ligero incremento durante las últimas semanas, acentuándose a finales del mes de abril (flecha negra en la Figura 12), pero sin llegar alcanzar los valores de los meses de diciembre de 2022 y enero de 2023. Estas medidas son consideradas como normales dentro de los índices de desgasificación actual del volcán en esta fase eruptiva 2022 – 2023.

Los triángulos amarillos en la Figura 12 muestran algunas de las emisiones de ceniza del volcán y que han seguido a la mayoría de los picos de desgasificación. Al momento de la emisión de este informe, la desgasificación en el Cotopaxi muestra una tendencia estable.

Informe Volcánico Especial Cotopaxi No. 2023-003
Figura 12. Flujo máximo de dióxido de azufre diario registrado en las 5 estaciones DOAS del volcán Cotopaxi (Refugio Norte: flanco norte, Refugio Sur: flanco sur, Cami y San Joaquín: flanco occidental y Tambo: flanco oriental). Gráfico actualizado hasta el 28 de mayo 2023.


La Figura 13 muestra la anomalía detectada por el sensor satelital TROPOMI (Sentinel-5SP), asociada a la emisión de dióxido de azufre (SO2) del volcán Cotopaxi, así como de los otros volcanes en erupción del Ecuador continental (por ejemplo: Sangay y El Reventador). Globalmente se muestra una disminución en la anomalía desde el mes de marzo, sin embargo, no se observa que la emisión de gas se haya detenido, por cuanto, la actividad del volcán aún se mantiene.

Informe Volcánico Especial Cotopaxi No. 2023-003
Figura 13. Emisión media de dióxido de azufre (SO2) registrada por el sensor satelital TROPOMI (Sentinel-5SP) y graficada en el código Google Engine de C. Laverde - SGC. Note en la esquina inferior derecha la escala cualitativa de colores asociada a la anomalía de emisión de gas.


Composición de los gases emitidos
La medición de especies gaseosas mayoritarias (agua - H2O, dióxido de carbono - CO2, dióxido de azufre - SO2 y ácido sulfhídrico - H2S) con el equipo MultiGAS (Aiuppa et al., 2004; Shinohara, 2005) ha mostrado que las razones obtenidas (Figura 14) son coherentes con la actividad reflejada en los demás parámetros de vigilancia. La razón SO2/H2S (triángulos anaranjados) ha mostrado una fluctuación en sus tendencias. Mientras que la razón CO2/SO2 (círculos azules) ha mostrado un incremento continuo desde el sobrevuelo efectuado el 18 de enero de 2023, cada uno de los ascensos observados han venido seguidos de emisiones de ceniza, esto se puede asociar a la presencia de magma en el conducto y una alimentación profunda de material de origen magmático en el reservorio. El último punto correspondiente al sobrevuelo del 24 de mayo de 2023 muestra por su parte una drástica disminución de la razón CO2/SO2, llegando a valores similares a los que mantenía en Octubre 2022.

Informe Volcánico Especial Cotopaxi No. 2023-003
Figura 14. Serie temporal de las razones entre especies gaseosas: SO2 /H2S y CO2/SO2 obtenidas gracias a las mediciones realizadas en los sobrevuelos de vigilancia desde el 24 de octubre de 2022 hasta el 29 de mayo de 2023.


Interpretación de datos

En base a la información disponible presente en este informe se ve que algunos parámetros de monitoreo han mostrado un ligero incremento y otros muestran una tendencia decreciente, considerando las características fluctuantes de los procesos eruptivos se ha catalogado la actividad del Volcán Cotopaxi como moderada con tendencia sin cambio tanto a nivel interno como a nivel superficial. El análisis conjunto de los diferentes parámetros de vigilancia muestra que la actividad reciente es provocada por la presencia de un cuerpo de magma pequeño dentro del conducto volcánico, el cual es el responsable de las emisiones de SO2 y ceniza. El actual periodo eruptivo se mantiene desde octubre de 2022 hasta mayo de 2023 (aprox. 7 meses), superando el periodo de cuatro meses de la fase eruptiva de agosto – noviembre de 2015. Sin embargo, la intensidad del presente periodo eruptivo es mucho menor, tanto para las emisiones de gas como para las emisiones y caídas de ceniza.

Las temperaturas de los campos fumarólicos ubicados alrededor del cráter se mantienen en niveles bajos. Los gases magmáticos, especialmente el SO2 son abundantes en la pluma volcánica, y aún son detectados tanto por la red de vigilancia permanente (DOAS – Novac Project) y por los sensores satelitales. Al momento de la emisión de este informe, las mediciones obtenidas en los sobrevuelos de vigilancia (imágenes térmicas, mediciones Mul-tiGAS) muestran que la actividad es de origen magmático. Por su parte, a nivel interno, la sismicidad sigue dominada por sismos de tipo LP, VLP y episodios de tremor cada vez menos energéticos; mientras que la deformación muestra una tendencia estable variando en un rango de 2 mm desde febrero de este año. Precisamente, los datos de vigilancia indican que la actividad superficial e interna ha presentado fluctuaciones desde finales del mes de febrero. Al momento, ésta se encuentra en un nivel más bajo que lo registrado en febrero, sin embargo, continúa y no ha retornado a los niveles previos al presente periodo eruptivo (antes de octubre 2022).

 

Pronósticos a corto plazo de la actividad del volcán Cotopaxi

*Se mantienen los propuestos el 10 de marzo 2023*

Nota de descargo: Los pronósticos a corto plazo se definen en función de la evolución de la actividad reciente del volcán Cotopaxi y presentan los principales fenómenos susceptibles de producirse. El grupo técnico-científico del Instituto Geofísico de la EPN actualiza periódicamente estos pronósticos para un periodo de días a semanas. En el caso de un proceso aproximadamente estacionario, no habrá cambios en los pronósticos. Los pronósticos están sujetos a cambios rápidos si se detectan anomalías en los parámetros de vigilancia volcánica. Los fenómenos naturales como las erupciones volcánicas son impredecibles en cuanto a su magnitud y cronología, por lo que los pronósticos son sólo una guía para la toma de decisiones por parte de las autoridades y de la comunidad en general. Los pronósticos pueden diferir de los escenarios de los mapas de amenaza volcánica en función de las condiciones actuales. El orden de los pronósticos no está basado en cálculos sino en función de las conclusiones de la evaluación de la actividad reciente del volcán.

Pronósticos a corto plazo (días a semanas) de la actividad del volcán Cotopaxi

  1. Más probable: la erupción del Cotopaxi se mantiene en nivel moderado con una tendencia sin cambios, y pudiera continuar con un descenso gradual de la actividad. Se espera la ocurrencia de esporádicas columnas eruptivas <2 km sobre la cumbre y caídas de ceniza a nivel del Parque Nacional Cotopaxi (PNC), o en casos excepcionales a nivel cantonal (principalmente Latacunga y Mejía), dependiendo de la dirección y velocidad del viento. Escenario referencial en los mapas de amenazas volcánicas del Cotopaxi: escenario 1 (índice de explosividad volcánica VEI≤1).
  2. Menos probable: la erupción del Cotopaxi registra un nuevo aumento gradual de la actividad, produciendo columnas eruptivas de altura entre 2-4 km sobre el cráter y caídas de ceniza de impacto cantonal a provincial (principalmente Cotopaxi y Pichincha), similar o mayor a lo observado entre noviembre del 2022 y enero del 2023. La acumulación de material podría provocar lahares secundarios de tamaño pequeño ocasionados por la removilización de la ceniza recién depositada debido a fuertes lluvias, afectando únicamente las inmediaciones del PNC. Escenarios referenciales en los mapas de amenazas volcánicas del Cotopaxi: escenarios 1 y 2 (índice de explosividad volcánica VEI 1-2); actividad histórica similar: 2015.
  3. Muy poco probable: la erupción del Cotopaxi registra aumento rápido y significativo de la actividad interna y superficial del volcán con columnas eruptivas altas (>8 km sobre el cráter) y caídas de ceniza a nivel nacional, flujos piroclásticos y lahares primarios procedentes del derretimiento parcial del glaciar. Escenarios referenciales en los mapas de amenazas volcánicas del Cotopaxi: escenarios 3 y 4 (índice de explosividad volcánica VEI≥3); actividad histórica similar: 1877


Elaborado por:

S. Vallejo, M. Almeida, F.J. Vásconez, A. Vásconez, B. Bernard, S. Hernández, P. Palacios, M. Yépez, F. Naranjo, D. Sierra, M. Córdova.
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

Pulso eruptivo del volcán Sangay y caída de ceniza

Informe Volcánico Especial Sangay No. 2023-001
Emisión de gases y ceniza observada por el satélite GOES-16 la madrugada de hoy 02h40 TL.


Resumen
A partir de las 22h00 tiempo local (TL) del 20 de abril de 2023, las estaciones sísmicas de la RENSIG detectaron tremor de emisión correspondiente a un pulso eruptivo del volcán Sangay. Esta señal alcanzó tres picos de actividad, un primer pico a las 23h16 TL, un segundo -más fuerte que el anterior- a las 00h52 TL y un último pico de menor intensidad a las 02h50 TL. Luego la actividad bajó gradualmente hasta desaparecer cerca de las 04h00 TL del 21 de abril de 2023, lo cual indica una duración total del evento de cerca de 6 horas. Posteriormente, a las 11h50 TL se observa otro pulso de actividad, pero menor que los anteriores. Las columnas de ceniza correspondientes a esta erupción alcanzaron alturas de hasta 9 km sobre el nivel de la cumbre (14,3 km snm) y por la dirección de los vientos hacia el occidente han provocado caída de ceniza leve a moderada en las provincias de Chimborazo (cantones Guamote y Pallatanga), Bolívar (cantón Chillanes), Los Ríos (cantones Montalvo, Babahoyo y Baba) y Guayas (cantones Salitre, Bucay, Juján, Simón Bolívar). Este pulso eruptivo es de menor intensidad comparado con los pulsos eruptivos de septiembre 2020 y marzo 2021. En base a los datos compilados hasta el momento, se estima que su índice de explosividad volcánica (VEI, por sus siglas en inglés) fue de 2 en la escala que va de 0 a 8 (Newhall y Self, 1982); lo que lo clasifica como una erupción pequeña. Es importante recordar que estos eventos son comunes en el volcán Sangay y que los principales fenómenos que puede afectar a la ciudadanía son la caída de ceniza y lahares secundarios en caso de que ocurran lluvias fuertes en la zona alta del volcán. El IG-EPN se mantiene en vigilancia permanente e informará oportunamente en caso de detectar cambios en los parámetros de monitoreo del volcán Sangay.


Anexo técnico-científico

Sismicidad
Durante la noche del jueves 20 y la mañana del viernes 21 de abril de 2023, estaciones distales, ubicadas a más de 50 km con respecto al volcán Sangay, registraron episodios de tremor asociados a la emisión de columnas de ceniza. Este tremor alcanzó un primer pico a las 23h16 TL, un segundo pico más fuerte, a las 00h52 TL y un tercer pico de menor intensidad, a las 02h50 TL. El evento duró aproximadamente 6 horas (Figura 1). Posteriormente se registró otro evento puntual a las 11h50 TL.

Informe Volcánico Especial Sangay No. 2023-001
Figura 1. Amplitudes de las señales sísmicas de la erupción del 20 y 21 de abril de 2023 en el Sangay, registradas en 3 estaciones regionales (lejanas al volcán: distancia mayor a 50 km). Las amplitudes son adimensionales (unidades en cuentas), y capturan la ocurrencia de 3 pulsos distintos, con picos que ocurren a las: 23h16, 00h52 y 02h50 tiempo local (TL).


Nubes de ceniza y caídas de ceniza
En imágenes satelitales de GOES-16, el 20 de abril de 2023 desde las 23h00 se observó una primera nube de gas y ceniza que alcanzó una altura máxima de 9 km sobre la cumbre a las 23h30 (14,3 km sobre el nivel del mar) y duró hasta las 00h10 TL del 21 de abril, dirigiéndose hacia el occidente. Una segunda nube de gas y ceniza se formó a partir de las 00h30 TL, alcanzando también 9 km sobre la cumbre y disminuyó gradualmente a partir de la 01h00 TL. Posteriormente, una nube de gas y ceniza de menor altura se formó a partir de las 02h50 TL y disminuyó hasta disiparse a las 04h00 TL. Estas nubes de vapor, gas y ceniza alcanzaron hasta 170 km de distancia al occidente del volcán, causando caídas de ceniza leves a moderadas en las provincias de Chimborazo (cantones Guamote y Pallatanga), Bolívar (cantón Chillanes), Los Ríos (cantones Montalvo, Babahoyo y Baba), y Guayas (cantones Salitre, Bucay, Jujan, Simón Bolívar) (Figs. 2 y 3).

Informe Volcánico Especial Sangay No. 2023-001
Figura 2. Resultado de la simulación de caída de ceniza de Ash3D basada en la observación de las erupciones de la noche del 20 y madrugada del 21 de abril 2023 (altura de 9 km sobre la cumbre, duración de 2,5 horas y un volumen de 0,0024 km3). Los polígonos indican el espesor de la caída de ceniza según la simulación en milímetros. Las figuras negras indican las localidades desde las cuales se reportó caída de ceniza.


Informe Volcánico Especial Sangay No. 2023-001
Figura 3. Fotos enviadas por integrantes de la Red de Observadores Volcánicos (ROVE). Sobre las consecuencias de la caída de ceniza, el día de hoy 21 de abril 2023.


Adicionalmente, desde las 11h50 TL hasta las 14h10 TL del 21 de abril, se observó otra emisión de gas y ceniza en imágenes satelitales. Ésta también se dirige hacia el occidente y es de similar altura que las emisiones anteriores (entre 8 y 9 km sobre la cumbre). Dicha actividad podría causar nuevamente caída de ceniza leve a moderada en las provincias de Chimborazo, Bolívar y Los Ríos.

 

Pronósticos a corto plazo de la actividad del volcán Sangay

Nota de descargo: Los pronósticos a corto plazo se definen en función de la evolución de la actividad reciente del volcán Sangay y presentan los principales fenómenos susceptibles de producirse. El grupo técnico-científico del Instituto Geofísico de la EPN actualiza periódicamente estos pronósticos para un periodo de días a semanas. En el caso de un proceso aproximadamente estacionario, no habrá cambios en los pronósticos. Los pronósticos están sujetos a cambios rápidos si se detectan anomalías en los parámetros de vigilancia volcánica. Los fenómenos naturales como las erupciones volcánicas son impredecibles en cuanto a su magnitud y cronología, por lo que los pronósticos son sólo una guía para la toma de decisiones por parte de las autoridades y del público. Los pronósticos pueden diferir de los escenarios de los mapas de amenaza volcánica en función de las condiciones actuales. El orden de los pronósticos no está basado en cálculos sino en función de las conclusiones de la evaluación de la actividad reciente del volcán.

  1. Más probable: continúa la actividad eruptiva. En este escenario se espera la ocurrencia de nuevas columnas eruptivas de gas y ceniza que pueden alcanzar hasta 9 km sobre el nivel de la cumbre; similares a las registradas en la noche del 20 de abril y en la madrugada y tarde del 21 de abril. Las emisiones pueden provocar caída de ceniza leve a moderada a nivel provincial (principalmente en Chimborazo, Bolívar, Los Ríos y Guayas), dependiendo de la dirección y velocidad del viento. Lahares secundarios pueden formarse por la removilización de la ceniza recién depositada debido a fuertes lluvias en las zonas altas del volcán, principalmente hacia el río Upano.
  2. Menos probable: disminución gradual de la actividad con columnas eruptivas de altura entre 2-6 km sobre la cumbre y caídas de ceniza a nivel cantonal (principalmente en la provincia de Chimborazo), dependiendo de la dirección y velocidad del viento.
  3. Muy poco probable: aumento rápido y significativo de la actividad interna y superficial del volcán con columnas eruptivas altas (>10 km sobre la cumbre) y caídas de ceniza a nivel provincial, flujos piroclásticos y lahares principalmente hacia el río Upano.

 

Recomendaciones generales
Dado que el volcán Sangay se encuentra en una zona remota los principales fenómenos que puede causar afectación a la población son: la caída de ceniza y lahares secundarios. Por esta razón el IG-EPN recomienda: en caso de estar en la zona de caída de ceniza protegerse con mascarilla, gafas de protección y limitar su exposición (más información: http://www.ivhhn.org/es/ash-protection). En caso de ocurrir lluvias fuertes en la zona alta del volcán pueden formarse lahares que descienden por los ríos que nacen en el volcán, principalmente el río Upano que pudiesen afectar la carretera Puyo-Macas, por ello se recomienda vigilar el caudal del río y evitar estar en las cercanías de los mismos.

Mantenerse informado de la evolución de la actividad eruptiva en la página web del Instituto Geofísico y en sus redes sociales Twitter, Facebook y Telegram. Seguir las recomendaciones de las autoridades de gestión de riesgos (SGR y GADs).

El IG-EPN se mantiene atento a la evolución de la actividad en el volcán Sangay e informará oportunamente en caso de detectar cambios en los parámetros de vigilancia.


Elaborado por: B. Bernard, F.J. Vasconez, A. Vásconez, S. Hernández, S. Hidalgo, D. Sierra, S. Aguaiza.
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

Aumento en los parámetros de vigilancia en el Complejo Volcánico Chiles – Cerro Negro

Resumen
Desde el 9 de marzo de 2023 se registra un nuevo incremento en la actividad sísmica del Complejo Volcánico Chiles – Cerro Negro (CV-CCN). Esta actividad está caracterizada por un enjambre de sismos de tipo volcano-tectónico los cuales se asocian a la fractura de rocas en el interior del volcán. Hasta el momento se ha registrado más de 63.000 eventos y el nivel de actividad interna ha sido catalogada como alta. A la fecha del presente informe, el sismo de mayor magnitud ocurrió el 01 de abril de 2023 a las 11H11 (TL), el cual alcanzó una magnitud de 3.7 MLv. Es importante indicar que en episodios anteriores se registró actividad sísmica simultánea en las zonas vecinas de Potrerillos y Chalpatán, regiones en las que se ha identificado fallas activas. En estas zonas se han registrado eventos con magnitudes superiores a 5 Mw en 2014 y en 2022 los cuales causaron daños en viviendas e infraestructura cercanas a los epicentros.

Los epicentros de este enjambre sísmico coinciden con el flanco sur del Chiles, zona donde se observa deformación superficial, otro parámetro de vigilancia que muestra tasas de cambio cada vez mayores en las estaciones cercanas durante las últimas semanas. En base a esto, se puede inferir que su causa es un proceso intrusivo reciente. Además, los resultados de la última campaña (20 – 22 marzo, 2023), realizada en varias fuentes termales cercanas al CV-CCN también muestra valores altos de concentración de los gases CO2 y H2S, lo que implica una perturbación del sistema hidrotermal, que, de intensificarse, podría producir explosiones freáticas. El Instituto Geofísico de la Escuela Politécnica Nacional comunicará oportunamente cualquier cambio relevante en el nivel de actividad del complejo volcánico Chiles – Cerro Negro.

Antecedentes
El Complejo Volcánico Chiles – Cerro Negro (CV-CCN) está compuesto por dos estratovolcanes considerados “Potencialmente Activos”, ubicados en la frontera entre Ecuador y Colombia, a 24 km al oeste de la ciudad de Tulcán, a 130 km al norte de la ciudad de Quito y 90 km de la ciudad de Pasto, departamento de Nariño (Colombia). Desde el año 2013, la zona ha registrado una serie de enjambres sísmicos, dentro de los cuales sobresalen el evento del 20 de octubre de 2014, el cual alcanzó una magnitud de 5.6 Mw (magnitud momento) y el del 25 de julio del 2022 que alcanzó una magnitud de 5.6 Mw. La compleja interacción entre el sistema magmático del CV-CCN, las fallas tectónicas regionales del sistema “El Angel” y el sistema hidrotermal juegan un papel crucial para las interpretaciones de los procesos que ocurren en esta zona.

Dada su localización en la zona fronteriza, perteneciente a la provincia del Carchi – Ecuador y al departamento de Nariño – Colombia, el CV-CCN es vigilado de manera conjunta por el Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) y el Servicio Geológico Colombiano (SGC) a través del Observatorio Vulcanológico y Sismológico de Pasto (OVSP) (Figura 1).

Informe Especial Chiles - Cerro Negro N. 2023-001
Figura 1. Localización de estaciones telemétricas (sismómetros, inclinómetros y cGPS) además de los sitios de muestreo en fuentes termales para la vigilancia volcánica del CVCCN a cargo del IG-EPN y el OVP. La línea segmentada amarilla representa la frontera entre Ecuador y Colombia.


Sismicidad
A partir del 9 de marzo de 2023 se incrementaron los registros de eventos sísmicos, fundamentalmente relacionados con procesos de fractura. En la Figura 2 se muestra el número diario de estos sismos desde inicios del mes de marzo de 2023. Se aprecia la tendencia ascendente de la actividad llegando a superar los 4000 eventos el 12 de marzo. Estos sismos volcano-tectónicos (VT´s) son resultado de la fractura de rocas debido a las presiones internas, posiblemente causadas por un proceso intrusivo (i.e. ingreso de magma) bajo el complejo volcánico.

Además, en la última semana de febrero y en la última de marzo se ha detectado varios eventos de largo periodo (LP’s) y de muy largo periodo (VLP’s), que están relacionados al movimiento de fluidos. Dichos fluidos pueden estar asociados tanto al magma en intrusión, como ser consecuencia de la interacción de éste con el sistema hidrotermal.

Informe Especial Chiles - Cerro Negro N. 2023-001
Figura 2.- Gráfico de barras con el número diario de eventos registrados en el CV-CCN desde el 1 de marzo hasta el 10 de abril de 2023.


La Figura 3 muestra la forma de onda y el espectrograma de un evento de muy largo período que ocurrió el día 23 de febrero a la 01h23 (TL), el cual alcanzó una magnitud de 2.5 MLv. El espectrograma de dicho evento en la estación CHL1 muestra un contenido importante de bajas frecuencias, con un pico máximo en 0.3 Hz. Este evento fue localizado en el flanco sur del volcán Chiles.

Informe Especial Chiles - Cerro Negro N. 2023-001
Figura 3. En el panel superior se muestra la forma de onda del sismo del 23/02/2023 01h23 (TL), de magnitud 2.5MLv registrada en la estación CHL1. En el panel inferior se muestra el espectrograma del evento.


Por otra parte, con el sistema de procesamiento SeisComP5 se localizó un total de 4061 eventos desde el 1 de marzo del 2023 hasta el 12 de abril de 2023. La Figura 4 muestra los eventos de fractura localizados y con magnitudes mayores o iguales a 2.0 MLv. Se observa que las localizaciones se concentran en el flanco sur del volcán Chiles a profundidades entre 5 km bajo el nivel del mar y 1 km sobre el nivel del mar (10 y 4 km bajo la cumbre respectivamente).

Informe Especial Chiles - Cerro Negro N. 2023-001
Figura 4. Mapa de localizaciones de sismos de fractura (VT's) entre el 1 de marzo y el 14 de abril de 2023. Los triángulos de color rojo representan las estaciones de vigilancia sísmica del Instituto Geofísico de la Escuela Politécnica Nacional (Ecuador) y el Observatorio Sismológico y Vulcanológico de Pasto (Colombia).


Dentro de este período, el sismo de fractura de mayor magnitud ocurrió el 1 de abril de 2023 a las 23h11 (TL) y alcanzó una magnitud de 3.7 MLv (magnitud local en vertical). Este evento fue sentido por pobladores de sectores aledaños a la zona del CV-CCN. La Figura 5 muestra la forma de onda y el espectrograma del sismo, con contenido espectral muy distinto del VLP del 23 de febrero de 2023.

Informe Especial Chiles - Cerro Negro N. 2023-001
Figura 5. En el panel superior se muestra la forma de onda en la estación CHL1 del sismo del 01/04/2023 23h11 (TL), de magnitud 3.7MLv y en el panel inferior se muestra es espectrograma del evento.


En la Figura 6A se observa la evolución temporal de todos los eventos catalogados en la zona con magnitudes iguales o mayores a 2.0 MLv desde marzo del presente año. La Figura 6B muestra la evolución de la magnitud media de sismos localizados tipo VT desde 2014 y es una medida de liberación de energía debido a los esfuerzos internos. El valor más alto se obtuvo el 2 de mayo de 2014, sin embargo, el 9 de marzo del presente año se obtuvo el segundo valor más alto. Ambos casos pueden interpretarse como efectos de procesos intrusivos de magma. Esta Figura es una evidencia indirecta de lo variables que son los esfuerzos bajo el edificio del complejo volcánico. También se evidencia que, a partir del 9 de marzo del presente año, las magnitudes medias tienden a descender a niveles previos.

Informe Especial Chiles - Cerro Negro N. 2023-001
Figura 6. Magnitud de eventos en el Complejo Volcánico Chiles-Cerro Negro. 6A: Evolución de magnitudes mayores a 2 desde 01 de marzo 2023, correspondiendo a las localizaciones mostradas en Figura 4. 6B: Magnitud media de eventos de fractura (VT) en el CVCCN desde 2014. Los valores medios son ponderados a partir de muestras de 100 eventos, y solapados 99. El ancho de cada intervalo representa la mínima variación para un cambio significativo en la magnitud media.


Geodesia
De acuerdo con los resultados de interferometría (InSAR) que se presentan en el mapa de velocidades de la Figura 7, se ha podido detectar un patrón de deformación que se extiende por el norte desde el volcán Chiles, hasta la caldera de Potrerillos en su parte sur, dentro de la Reserva Ecológica "El Ángel" en la provincia del Carchi. Por las características y la geometría de la deformación, ésta se interpreta como inflación. El mayor cambio de volumen al interior del sistema volcánico se concentra en 2 zonas principales: en el sector de Lagunas Verdes en la parte sur del volcán Chiles y en la caldera de Potrerillos (ambas zonas representadas en color naranja - rojo). Las velocidades registradas en dirección vertical para dichas zonas superan en promedio los 60 mm por año entre enero de 2022 y marzo de 2023.

Informe Especial Chiles - Cerro Negro N. 2023-001
Figura 7. Mapa de velocidades, obtenido en base a Interferometría por Radar de Apertura Sintética (InSAR), del complejo volcánico Chiles – Cerro Negro, así como de las calderas de Potrerillos y Chalpatán. Representa la deformación detectada en dirección vertical durante el periodo entre enero de 2022 a marzo de 2023, de acuerdo con la escala presente en la parte inferior izquierda del mapa.


Las series temporales de las bases de posicionamiento cGPS (Figura 8) evidencian que el complejo volcánico se mostró mayormente estable durante todo el año 2021. Entre abril y mayo del 2022, las bases registraron el inicio de un episodio de inflación que duraría hasta noviembre de ese mismo año. La velocidad de la deformación observada durante aquel episodio en la base CHLW (ubicada al suroccidente del volcán Chiles) fue de aproximadamente 90 mm/año (entre 3 y 4 veces superior en comparación a la velocidad media registrada durante los años de 2014 a 2021). Posteriormente, entre diciembre del año anterior y febrero del presente año, se observa un descenso en la velocidad de la deformación.

Informe Especial Chiles - Cerro Negro N. 2023-001
Figura 8. Series temporales de las posiciones relativas, registradas por las bases de posicionamiento cGPS del complejo volcánico Chiles – Cerro Negro. Los cambios diarios en la posición relativa (desplazamientos) representan la evolución de la deformación en un punto específico en los flancos del complejo volcánico, durante el periodo entre enero de 2021 a marzo de 2023.


El más reciente período de inflación inició a finales de febrero de este año, alcanzando su valor máximo a mediados del mes de marzo. En esta ocasión, la base CHLW registra un desplazamiento vertical entre 25 y 30 mm en un período aproximado de un mes, lo que corresponde a una velocidad cercana entre los 300 y 360 mm/año; es decir que, la tasa de ascenso en este período es de al menos 10 veces más rápida en comparación a la tasa registrada durante 2014 a 2021. En las últimas semanas del mes de marzo de 2023 se observa nuevamente un cambio de patrón con tendencia descendente.

 

Geoquímica
Desde el año 2014 se lleva a cabo la medición de parámetros fisicoquímicos, muestreo para análisis de especies mayoritarias en agua y medición de razones de especies gaseosas mayoritarias en las fuentes termales cercanas al CV-CCN. Tras el inicio de la agitación sísmica de marzo, los técnicos del IG-EPN visitaron las zonas de: Aguas Negras, Aguas Hediondas, el Hondón, Artesón, Lagunas Verdes y La Ecuatoriana (Figura 9), con la finalidad de corroborar la existencia de cambios en la actividad superficial. Dichos trabajos se llevaron a cabo entre el 20 al 22 de marzo de 2023.

Informe Especial Chiles - Cerro Negro N. 2023-001
Figura 9. Medición de parámetros fisicoquímicos en las zonas de Aguas Negras (izquierda) y El Hondón (derecha). Campaña del 20 al 22 de marzo de 2023 (Fotos: M. Almeida/ IG-EPN).


En cuanto a las manifestaciones termales inspeccionadas, no se observó cambios importantes, a excepción de un descenso en las razones gaseosas de CO2/H2S en las zonas de Aguas Hediondas, Aguas Negras y Lagunas Verdes (Figura 10). Esto puede traducirse como un incremento en la emisión de H2S, gas fácilmente perceptible por su olor similar al de huevos podridos, que estuvo presente en las zonas antes mencionadas. En ninguna de las fuentes se detectó la presencia de SO2, siendo ésta la especie gaseosa de origen magmático.

El incremento de H2S se reflejó también en la saturación de los equipos de medición durante esta campaña, existiendo una concentración ambiental de más de 120 ppm de H2S en las surgentes de gas en los sitios antes mencionados. Así mismo se detectaron concentraciones bastante altas de CO2, llegando a las 1350 ppm en Aguas Hediondas, 2900ppm en Aguas Negras, 5600ppm en el Hondón y más de 30 000 ppm en Lagunas Verdes. Se presume que las altas emisiones de gas se deben a la agitación provocada en el sistema hidrotermal por la sismicidad persistente en la zona.

Informe Especial Chiles - Cerro Negro N. 2023-001
Figura 10. Medición de razones con instrumento multiGAS en la zona de Lagunas Verdes, 20/03/2023 (Fotos: D. Sierra/ IG-EPN). Se aprecia claramente que el nivel de agua en las Lagunas Verdes se ha recuperado después del abrupto descenso que se observó en agosto 2022.


Conclusiones

  • Al momento de emisión de este informe el nivel de actividad interna en el CV-CCN se considera como alta y el nivel de la actividad superficial es muy baja.
  • Los eventos sísmicos asociados al movimiento de fluidos podrían representar una perturbación del sistema hidrotermal, sin que esto sugiera una erupción en el corto plazo.
  • Desde el 09 de marzo de 2023, las estaciones de la red de vigilancia sísmica registran un nuevo enjambre de eventos en el complejo volcánico Chiles – Cerro Negro, dominado principalmente por eventos de fractura, superando los 4000 eventos por día (12/03/2023). Actualmente la tasa de sismos se mantiene en alrededor de 1000 eventos al día. El evento de mayor magnitud ocurrió el 01 de abril de 2023 y alcanzó una magnitud de 3.7 MLv. No se descarta la ocurrencia de eventos con magnitudes similares y/o superiores, como ya se han registrado en el pasado, y que pudieran ser sentidos en las poblaciones cercanas.
  • La sismicidad se concentra principalmente en el flanco sur del volcán Chiles a profundidades cercanas al nivel del mar. Esta zona es aproximadamente coincidente con la zona de deformación más cercana al volcán.
  • Las zonas con mayor deformación cubren una extensa área que abarca desde la parte sur del volcán Chiles hasta la parte sur de la caldera de Potrerillos (sector de las lagunas del Voladero). 
  • El sector de Lagunas Verdes, al sur del volcán Chiles, presenta episodios de deformación con velocidades cada vez mayores durante períodos de tiempo cada vez más cortos.
  • En la campaña de medición de gases más reciente (20 – 22 de marzo) se ha observado incrementos en las concentraciones de H2S y CO2 en las zonas de Aguas Hediondas, Aguas Negras y Lagunas Verdes, posiblemente causadas por la agitación sísmica reciente. No se ha observado cambios relevantes en la zona del balneario de Aguas Hediondas.

 

Pronósticos a corto plazo de la actividad del Complejo Volcánico Chiles – Cerro Negro

Nota de descargo: Los pronósticos a corto plazo (días a semanas) se definen en función de la evolución de la actividad reciente del CVCCN y presentan los principales fenómenos susceptibles de producirse. El grupo técnico científico del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) y el Servicio Geológico Colombiano (SGC) a través del Observatorio Vulcanológico y Sismológico de Pasto (OVSP) actualizan periódicamente estos pronósticos para un período de días a semanas. En el caso de un proceso aproximadamente estacionario, no habrá cambios en los pronósticos. Los pronósticos están sujetos a cambios rápidos si se detectan anomalías en los parámetros de vigilancia volcánica. Los fenómenos naturales como las erupciones volcánicas son impredecibles en cuanto a su magnitud y evolución, por lo que los pronósticos son sólo una guía para la toma de decisiones por parte de las autoridades y del público. Los pronósticos pueden diferir de los escenarios de los mapas de amenaza volcánica en función de las condiciones actuales. El orden de los pronósticos no está basado en cálculos sino en función de las conclusiones de la evaluación de la actividad reciente del volcán.

Pronósticos a corto plazo de la actividad del complejo volcánico Chiles Cerro Negro

  1. Más probable: La actividad sísmica vaya disminuyendo progresivamente, finalizando el presente enjambre sísmico.
  2. Menos probable: El enjambre sísmico se prolonga en el tiempo, más que en episodios anteriores (2014, 2022), con ocurrencia ocasional de sismos de magnitud 3 o superior, que podrían ser sentidos por las poblaciones cercanas.
  3. Muy poco probable: Los parámetros de vigilancia muestran mayor sismicidad superficial asociada al movimiento de fluidos, cuya tendencia se incrementa hasta desencadenar un episodio eruptivo, que inicialmente puede ser de tipo freático (explosiones de vapor de agua/hidrotermales) y/o evolucionar paulatinamente a una actividad de tipo freato-magmática (emisiones de columnas de ceniza, flujos de lava).

En ninguno de los anteriores pronósticos se descarta la posibilidad de que sismos de tamaño moderado (magnitud > 5.0) ocurran, como por ejemplo el de julio 2022.

 

Recomendaciones

  • La ocurrencia de sismos mayores a 5 Mw puede generar inestabilidad en laderas, deslizamientos, en zonas propensas a movimientos en masa como por ejemplo el sector de Lagunas Verdes, por lo que se recomienda tomar medidas preventivas frente a este tipo de fenómenos. También pueden ocurrir daños estructurales en edificaciones cercanas, por lo que se recomienda revisar su grado de vulnerabilidad de las viviendas e infraestructuras.
  • Mantenerse alejados de las surgentes de agua, asociadas a las fuentes termales descritas en el informe (Aguas Hediondas, Aguas Negras Lagunas Verdes y El Hondón) pues cambios en las tasas de emisión o composición de los gases pueden ser perjudiciales para la salud. Además, por ser zonas inestables y con altas temperaturas pudieran representar un riesgo para la integridad física de las personas. Adicionalmente, en casos extremos pudieran ocurrir explosiones freáticas. Estos fenómenos son súbitos e impredecibles.
  • Los fenómenos naturales como erupciones volcánicas no se pueden predecir, por lo que la vigilancia instrumental permanente es la mejor manera en la que se puede conocer la evolución de la actividad volcánica. Se recomienda mantenerse informados a través de las fuentes oficiales, consultar la información cartográfica correspondiente a los peligros o amenazas volcánicas asociadas para la definición y difusión de zonas seguras y exclusión de zonas potencialmente peligrosas.

 

A. Córdova, D. Sierra, M. Almeida, P. Mothes, M. Yépez, S. Hidalgo, D. Pacheco, P. Palacios, S. Hernández.
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

Antecedentes

El Complejo Volcánico Chiles Cerro Negro, se localiza en los dominios de la Cordillera Occidental, provincia de Carchi - Ecuador y departamento de Nariño - Colombia. El complejo volcánico ha sido catalogado como “Potencialmente Activo” según el Mapa de Volcanismo Plio-cuaternario de Bernard y Andrade (2011). Pese a que no existe evidencia de actividad eruptiva explosiva importante en los últimos 6000 años (Santamaría et al., 2017), se tiene descripciones de actividad superficial de tipo fumarólica y de sismos asociados con su actividad en los últimos dos siglos (Monsalve y Laverde, 2014).

Desde 2013, en la zona aledaña al Complejo Volcánico Chiles - Cerro Negro (CV-CCN) empezó a registrarse una serie de eventos sísmicos que fueron incrementando en frecuencia y magnitud desencadenando una crisis con sismos sentidos por los residentes de las poblaciones de Chiles en Colombia y Tufiño en Ecuador.  La sismicidad alcanzó su punto máximo el 20 de octubre de 2014 con la ocurrencia de un sismo de magnitud 5.9 y un número de más de 6000 sismos volcano-tectónicos (VT) por día (IGEPN, 2014a, 2014b). Desde entonces, se han venido registrando varios enjambres de sismos en la zona, incluyendo varios eventos sentidos. Más recientemente, el 25 de Julio de 2022 un sismo de magnitud 5.6 Mw sacudió la zona de influencia del CV-CCN causando importantes daños en la zona de El Ángel y San Gabriel (IGEPN, 2022). Desde entonces la actividad ha decrecido regresando a niveles considerados como “normales” para esta zona.

Complejo Volcánico Chiles - Cerro Negro  Informe de Monitoreo de Fuentes Termales - Septiembre de 2022
Figura 1.- Ubicación de las principales fuentes termales del Complejo Volcánico Chiles- Cerro Negro. (Tomado de: Sierra, 2022).


La compleja interacción entre el sistema magmático del CV-CCN, las fallas tectónicas regionales de El Ángel y el sistema hidrotermal (que solamente del lado ecuatoriano cuenta con más de 10 manifestaciones superficiales; Figura 1) juegan un papel crucial para las interpretaciones de los procesos que ocurren en esta zona (IGEPN, 2022).

 

Reporte de los trabajos efectuados

Los días 21 y 22 de septiembre de 2022, un equipo conformado por técnicos del IG-EPN realizó trabajos de monitoreo en las fuentes termales asociadas al complejo volcánico Chiles- Cerro Negro. Dichos trabajos consistieron en: muestreo de aguas para determinación de componentes mayoritarios, medición de parámetros físico-químicos y la determinación de especies gaseosas mayoritarias usando la técnica multiGAS (Aiuppa et al., 2004; Shinohara, 2005). Las fuentes visitadas durante esta campaña fueron: El Hondón, Aguas Hediondas, Lagunas Verdes, El Artezón, Aguas Negras, Potrerillos, Montelodo y La Ecuatoriana (Figura 1).

Para el presente reporte se tomará en cuenta solo aquellas fuentes en las que se hayan presentado comportamientos inusuales durante este último período de recolección de datos 2019-2022.

 

El Hondón

Luego de la visita realizada en julio de 2022, se ha podido evidenciar una aparente estabilidad en cuanto a la actividad superficial de la zona (Figura 2). Tanto el número de fuentes como el de las grietas se ha mantenido sin cambios importantes. El comportamiento de la fuente es similar al observado en visitas anteriores, se caracteriza por la ocurrencia de varias “surgentes” de agua en ebullición, que presentan temperaturas de 79 - 84°C (siendo esta última la temperatura de ebullición del agua esperable a la altura de esta fuente (3650 msnm).

En este sitio se obtuvieron datos continuos de medición de concentración de gas. Se posicionó al equipo MultiGAS en dirección de la columna de gas emitida por las fuentes activas. Cabe destacarse que a diferencia de otras veces, en esta ocasión no fue posible percibir olor a huevos podridos (característico de la emisión de H2S). La concentración de CO2 en este campo llegó a un máximo de 1649 ppm. Este valor está dentro de los parámetros analizados previamente en este sitio, sin embargo, no se puede descartar que puedan existir emisiones pulsátiles con mayores concentraciones del gas, sin que éstas puedan ser anticipadas.

Complejo Volcánico Chiles - Cerro Negro  Informe de Monitoreo de Fuentes Termales - Septiembre de 2022
Figura 2.- Actividades de muestreo, medición de parámetros físico-químicos y mediciones multiGAS en el campo termal de El Hondón. En la imagen se puede apreciar la continua emisión de vapor de agua, que contiene también bajas cantidades de dióxido de carbono (CO2).  (M Almeida, IGEPN– 22 de septiembre de 2022).


Aguas Hediondas:

En la zona de Aguas Hediondas, se posicionó el equipo MultiGAS a una distancia prudente del sitio de emisión (Fig. 2), sin embargo, se podía percibir que la concentración de los gases era sumamente elevada, con lo cual el equipo se saturó para el H2S en varias ocasiones. Los valores de concentración para el CO2 también fueron bastante elevados (alcanzando hasta 7735 ppm), pero ligeramente inferiores a los valores obtenidos con el mismo equipo en campañas anteriores (ej. 8780 ppm en Julio 2022).

Complejo Volcánico Chiles - Cerro Negro  Informe de Monitoreo de Fuentes Termales - Septiembre de 2022
Figura 3. Medición de concentración de gas utilizando MultiGAS en Aguas Hediondas/ Medición de parámetros físico químicos y muestreo  en la surgente de Agua en  Aguas Hediondas (Fotos: D Sierra, IGEPN – 21 de septiembre de 2022).


Las razones CO2/H2S disminuyeron a partir de marzo de 2022 para volver a incrementarse a partir de julio con una pendiente menor, sugiriendo que la perturbación del sistema hidrotermal continúa. Estos valores se muestran en la gráfica de la figura 3.  

Complejo Volcánico Chiles - Cerro Negro  Informe de Monitoreo de Fuentes Termales - Septiembre de 2022
Figura 4. Gráfico de la razón CO2/ H2S obtenida en la pluma de gas de los campos fumarólicos de Lagunas Verdes (naranja), Aguas hediondas (azul) y Aguas Negras (gris).


Lagunas Verdes

Mediciones Geoquímicas

La zona de Lagunas Verdes, lleva su nombre por la existencia de al menos 6 lagunas cuya coloración ha sido tradicionalmente azul verdosa. Las lagunas tenían áreas aproximadas de 18800, 9700, 3660, 950, 890 y 240 m2 respectivamente, calculadas en base a imágenes Satelitales de Google Earth del 20/11/2016 (Figura 3). Desde los años 70 se ha reconocido esta zona como un campo de emisión de gas, se sabe que en el pasado el flujo era abundante sobretodo en la zona marcada con el punto amarillo (Figura 3). Hoy en día las emisiones se caracterizan por la presencia de gas difuso (Villarroel et al., 2021) principalmente CO2 y H2S generando un fuerte olor a huevos podridos perceptible desde la carretera.  Las emisiones gaseosas han provocado alteración en las rocas que incluyen minerales como caolinita y alunita (CELEC EP & ISAGEN, 2012; Sierra, 2022), las zonas de alteración han sido delimitadas con color rojo en la Figura 3.

Utilizando el MultiGAS se realizaron mediciones en la zona de mayor flujo de gas (punto amarillo Figura 3). La concentración máxima de CO2 alcanzó 30 000 ppm, muy alta respecto a concentraciones medidas en campañas anteriores, cuyos valores no superan los 15 000 ppm.  Del mismo modo los valores de H2S fueron tan altos que llegaron a saturar el equipo (H2S > 120 ppm). Las razones obtenidas en este sitio son claras únicamente para CO2/H2S. En comparación con los valores obtenidos en julio, las nuevas razones CO2/ H2S son más altas.

Las emisiones gaseosas de Lagunas Verdes no muestran contenidos significativos de vapor de agua, los valores de H2O obtenidos están a la par del agua presente en el ambiente. En tal virtud, las proporciones volumétricas no muestran resultados confiables, por consiguiente, no pueden ser comparadas con las que se han obtenido anteriormente.

Complejo Volcánico Chiles - Cerro Negro  Informe de Monitoreo de Fuentes Termales - Septiembre de 2022
Figura 5.- Zona de Lagunas Verdes mostrando el contorno de las Lagunas y las zonas de alteración hidrotermal. La imagen muestra además la zona escarpada de donde ocurrieron los deslizamientos el 19 de agosto de 2022 y el punto donde se puede encontrar la mayor emisión de gases.


Complejo Volcánico Chiles - Cerro Negro  Informe de Monitoreo de Fuentes Termales - Septiembre de 2022
Figura 6.- Medición de especies gaseosas mayoritarias en la zona de Lagunas Verdes con el equipo multiGAS (S Hidalgo, IGEPN– 21 de septiembre de 2022).


Observaciones Visuales

En lo que respecta a las observaciones visuales, la comparación entre la última campaña de mediciones realizada en julio 2022 (a pocos días del sismo de magnitud 5.6Mw) y la campaña del 22 de agosto muestran una dramática disminución en el nivel de agua de las Lagunas Verdes. Se estima un descenso de casi 0,5m en el nivel de las lagunas, lo que se podría traducir como la pérdida de al menos unos 10 mil metros cúbicos de agua. El descenso del agua ha provocado incluso que las Lagunas pierdan su color verdoso característico, hoy se muestran con un tono negruzco (Figura 5).

La zona de Lagunas Verdes y sus aguas son vigiladas por el IG-EPN desde el año 2014 y desde que se tiene registros no se ha visto una disminución tan abrupta en el nivel del agua. Con un pH promedio de 6,25, una conductividad promedio de 46 µS/cm y temperaturas de entre 7 y 15°c (fluctuantes con el clima) en adición de  las firmas isotópicas de isótopos estables (Sierra, 2022) se ha interpretado que estas lagunas corresponden a un cuerpo de agua superficial recargado por lluvia con escaso o nulo aporte de fluidos de origen profundo.

Siendo que la principal recarga de agua de estas lagunas es la lluvia, los factores climáticos como la ausencia de precipitaciones en la zona pudieran contribuir a la disminución del nivel otra explicación plausible y que justificaría más fácilmente el vertiginoso descenso en los niveles es que la frecuente sismicidad haya fracturado el piso a la base de las lagunas aumentando la permeabilidad de las rocas y facilitando la percolación del agua hacia afuera de las lagunas.

Complejo Volcánico Chiles - Cerro Negro  Informe de Monitoreo de Fuentes Termales - Septiembre de 2022
Figura 7.- Fotografía comparativa de la zona de Lagunas Verdes el 28 de Julio de 2022, versus el estado actual de las Lagunas el 21 de septiembre de 2022. Se observa una importante disminución en el nivel de las lagunas, así como el afloramiento de la base del islote intermedio.


Deslizamientos en la zona

Tras la ocurrencia de un sismo de magnitud 4,3 del 18 de agosto de 2022 a las 19:22 TL se produjo un deslizamiento en la zona cercana a Lagunas Verdes que provocó un bloqueo en la vía Tulcán- Maldonado. Aunque los escombros fueron removidos rápidamente por las autoridades (Figura 6-A), aún se pueden observar las cicatrices de los fenómenos de remoción en masa de tipo caída, el más grande de ellos puede ser observado en la Figura 6-B, pero se observan otras zonas de inestabilidad y de deslizamientos de menor magnitud, en el borde del escarpe (línea amarilla Figura 3).

Complejo Volcánico Chiles - Cerro Negro  Informe de Monitoreo de Fuentes Termales - Septiembre de 2022
Figura 8.- Remoción de escombros del deslizamiento del 18/08/22 en la zona de Lagunas Verdes, foto cortesía de Diario “El Universo” 20/08/22. Cicatriz de deslizamiento tipo caída en el escarpe lateral de la carretera Tulcán-Maldonado, Foto: D. Sierra / IG-EPN 21/09/2022.


Aguas Negras:

Durante las últimas campañas se ha evidenciado una aparente similitud en cuanto a las razones gaseosas medidas en la zona de Aguas Negras comparándolas con las mediciones de las Lagunas Verdes. El equipo MultiGAS fue posicionado cerca de la zona de burbujeo, donde se percibía con mayor intensidad el olor a H2S (Figura 7). Las concentraciones máximas de CO2 y H2S, fueron 2822 y 118 ppm respectivamente. Estos valores son similares a los registrados en la campaña de julio, pero elevados respecto a campañas anteriores.

La razón CO2/H2S obtenida en este sitio mantiene la tendencia observada desde enero de 2020 (Fig. 3), tal como se observa en la figura 3. Si bien no se observa un cambio en la tendencia general, se observa una disminución en la pendiente de la curva, respecto a las 2 últimas mediciones que también pudiera relacionarse a la perturbación observada en el sistema.

Complejo Volcánico Chiles - Cerro Negro  Informe de Monitoreo de Fuentes Termales - Septiembre de 2022
Figura 9. Muestreo de aguas y medición de parámetros físico-químicos en la surgente termal de Aguas Negras (S. Hidalgo, IGEPN– 21 de septiembre de 2022).


Montelodo

La fuente termal de Montelodo, se ubica unos 3 km al sur de Tufiño (Figura 1), dentro de una propiedad agrícola privada. La fuente termal de Montelodo es vigilada periódicamente por el IG-EPN desde enero de 2017. Históricamente, esta fuente se ha caracterizado por temperaturas modestas de aproximadamente 27°C, conductividades promedio de 400 µS/cm y pH de 6,5. Tradicionalmente la fuente consistía en una emanación de agua de bajo flujo desde la pared de roca que posteriormente se mezclaba con un riachuelo de agua fría.

Los pobladores reportan que después del sismo del 25 de Julio de 2022, al menos tres nuevos ojos de agua aparecieron en la pared de roca a escasos metros de la fuente principal, la cual también incrementó significativamente su caudal.  Las nuevas surgentes parecen tener características muy similares a la fuente original, por lo que se presume un origen común.

Lo más probable es que tras el sismo el fracturamiento de las rocas haya permitido un incremento en la permeabilidad, abriendo nuevos caminos para la salida del agua, así mismo el cambio en el estado de esfuerzos pudiera haber generado mayor presión en el interior aumentando el flujo de agua.

Complejo Volcánico Chiles - Cerro Negro  Informe de Monitoreo de Fuentes Termales - Septiembre de 2022
Figura 10.- Aparecimiento de nuevas surgentes de agua en la zona de Montelodo, la primera emana directamente de la pared de roca, la otra se encuentra en una pendiente y ha sido entubada por los comuneros para su aprovechamiento.


Concentración de SO2:

En ninguno de los casos en los que se utilizó el equipo MultiGAS (Lagunas Verdes, Hondón, Aguas Hediondas y Aguas Negras) se detectó la presencia de SO2, lo cual indica que los 4 puntos de muestreo presentan una actividad principalmente hidrotermal. Los valores de SO2 que se obtuvieron en los tres sitios (Lagunas Verdes, Aguas Hediondas y Aguas Negras) están en el rango de valores considerados como valores de base o cero, según la precisión del equipo.


Parámetros físico – químicos:

Se presentan los datos de los parámetros físico-químicos en Aguas Hediondas por ser la fuente en la que mejor se han evidenciado cambios a lo largo del tiempo (Figura 9). En cuanto al pH, se observa una tendencia al descenso, lo que se traduce como la emanación de aguas más ácidas.  Por otra parte, la temperatura ha sufrido ligeros incrementos, pasando de 56.6 a 59 °C. La conductividad se mantiene estable en alrededor de 2800 µS/cm. Tanto Lagunas Verdes como Aguas Negras no muestran una variación en estos parámetros. Para el caso del Hondón la temperatura ha disminuido a 83.4 °C, casi dos grados por debajo del valor promedio medido desde 2019 (85 °C). La conductividad no ha mostrado mayor variación y el pH ha disminuido de 7.59 a 6.97.

Complejo Volcánico Chiles - Cerro Negro  Informe de Monitoreo de Fuentes Termales - Septiembre de 2022
Figura 11. Gráfico de evolución de los parámetros físico – químicos de las fuentes termales en el campo termal de Aguas Hediondas, desde el 2013 hasta septiembre de 2022.


Evaluación de la amenaza por proximidad a los campos fumarólicos

En las zonas de Aguas Hediondas, Aguas Negras y Lagunas Verdes: La proporción de CO2 y H2S en el ambiente aún alcanza valores bastante elevados, incluso mayores que los detectados las últimas campañas. Respirar aire contaminado con estos gases puede ser perjudicial para la salud sobretodo en concentraciones altas y tiempos de exposición prolongados, puede causar: mareos, malestar general y en casos extremos hasta asfixia, envenenamiento y muerte.

Como se detalló anteriormente en la descripción de cada una de las fuentes de emisión, las concentraciones del gas son sumamente elevadas, por tal razón representan un peligro para quienes se acerquen a estos sitios, por ello se recomienda el uso de máscaras antigás con filtros especiales, las cuales ofrecen protección para gases ácidos y halogenuros. Sin embargo, incluso estas máscaras no resultan de utilidad ante la presencia del CO2, un gas inoloro, e incoloro, que cuando alcanza altas cantidades se acumula en zonas bajas y reemplaza al oxígeno causando asfixia.

 

CONCLUSIONES

  • Las emisiones gaseosas de las manifestaciones del CV-CCN no muestran concentraciones de SO2, lo que indica que no existe un aporte evidente de gases de tipo magmático sino únicamente un aporte de gases del sistema hidrotermal.
  • La proporción volumétrica y concentración de dióxido de carbono (CO2) y ácido sulfhídrico (H2S) en Aguas Hediondas, Aguas Negras y Lagunas Verdes es extremadamente elevada. Por lo cual representa una amenaza para la seguridad y salud de quienes se acerquen a las surgentes de agua y gas.
  • En las zonas de Aguas Hediondas, Aguas Negras y Lagunas Verdes es notoria una perturbación en el sistema hidrotermal, perceptible mediante la razón CO2/H2S, la cual se muestra contraria a la tendencia observada entre 2020, hasta marzo de 2022.
  • En los últimos tiempos, los parámetros físico químicos de las fuentes termales del Complejo Volcánico Chiles - Cerro Negro no han mostrado cambios significativos, con excepción de Aguas Hediondas que ha mostrado un descenso en el pH y un incremento de temperatura de 56 a 59 °C, aunque cabe destacarse que estas variaciones no difieren de las que ya se han observado en años pasados.
  • El campo termal de El Hondón, no ha mostrado cambios respecto a lo observado el mes de julio, es decir, no hay evidencias de nuevo fracturamiento o aparecimiento de nuevas surgentes termales. Sin embargo, la alta inestabilidad del sitio y las altas temperaturas del agua constituyen una potencial amenaza para las personas que se acerquen a la zona.
  • Luego del sismo de 25 de julio (Magnitud 5.6Mw) se han evidenciado cambios morfológicos y variaciones en el sistema hidrotermal. Buenos ejemplos son la disminución en el nivel de agua las Lagunas Verdes, los deslizamientos en la misma zona y el reporte de nuevas surgentes de agua en la zona de Montelodo. Todo esto se atribuye presuntamente al fracturamiento de las rocas favorecido por la sismicidad


RECOMENDACIONES:

Con base en las observaciones de campo se recomienda:

  • Informar a la población sobre los peligros asociados a la emisión de gases en las fuentes termales de: “El Hondón”, “Aguas Negras” y la zona de emisión de aguas y gas que está amurallada en “Aguas Hediondas”.
  • Dado que el Balneario de Aguas Hediondas se ubica a una distancia prudente de la zona de emisión (misma que ha sido tradicionalmente restringida al público y se encuentra amurallada) y considerando además que en la zona de las piscinas no se han registrado concentraciones anómalas de gas ni cambios morfológicos que sugieran algún peligro para la integridad de las personas, por el momento no existen motivos que ameriten suspender las actividades turísticas y recreacionales en el Balneario de Aguas Hediondas.
  • Tomar acciones preventivas en la zona de Lagunas Verdes, la cual se caracteriza por la fuerte emisión de gases pero que no puede ser fácilmente restringida, por estar directamente sobre la carretera, además de ser una zona de actividad minera (canteras).
  • Revisar la estabilidad de los taludes en las zonas aledañas a Lagunas Verdes, pues en caso de ocurrir nuevos movimientos sísmicos es probable que se den nuevos deslizamientos dada la inestabilidad de los taludes.
  • Aunque la sismicidad ha disminuido hasta alcanzar niveles de base, las complejas interacciones entre el sistema magmático del CV-CCN, el sistema de fallas regional del El Ángel y el sistema hidrotermal, podrían conducir a nuevos episodios de elevada actividad sísmica, por lo que se recomienda mantenerse siempre informados sobre posibles cambios en la actividad del volcán.

Al momento de emisión del presente informe los niveles de actividad de volcán son: SUPERFICIAL MUY BAJA sin cambio, e INTERNA BAJA sin cambio. En caso de presentarse novedades respecto a la actividad del CV-CCN, el IG-EPN informará oportunamente.

 

REFERENCIAS:

  • Aiuppa, A., Burton, M., Murè, F., Inguaggiato, S., 2004. Intercomparison of volcanic gas monitoring methodologies performed on Vulcano Island, Italy. Geophysical Research Letters 31.
  • Bernard, B., Andrade, D., 2011. Mapa del volcanismo Cuaternario del Ecuador.
  • CELEC EP & ISAGEN, 2012. Plan de desarrollo Integral y preparación del alcance de los estudios técnicos de la fase de prefactibilidad del Prospecto Tufiño-Chiles-Cerro Negro. Segundo Informe Fase II.
  • IGEPN, 2022. INFORME ESPECIAL COMPLEJO VOLCÁNICO CHILES – CERRO NEGRO No. 2022-03.
  • IGEPN, 2014a. Informe de Actividad del Volcán Chiles - Cerro Negro No23.
  • IGEPN, 2014b. Informe de Actividad del Volcán Chiles - Cerro Negro No27.
  • Monsalve, L.M., Laverde, C.A., 2014. CONTRIBUCIÓN AL REGISTRO HISTÓRICO DE ACTIVIDAD DE LOS VOLCANES CHILES Y CERRO NEGRO (FRONTERA COLOMBO-ECUATORIANA.
  • Santamaría, S., Telenchana, E., Bernard, B., Hidalgo, S., Beate, B., Córdova, M., Narvaez, D., 2017. Registro de erupciones ocurridas en los Andes del Norte durante el Holoceno: Nuevos resultados obtenidos en la turbera de Potrerillos, Complejo Volcánico Chiles-Cerro Negro.
  • Shinohara, H., 2005. A new technique to estimate volcanic gas composition: plume measurements with a portable multi-sensor system. Journal of Volcanology and Geothermal Research 143, 319–333.
  • Sierra, D., 2022. Estudio geoquímico de fluidos de los sistemas volcánicos e hidrotermales activos del Norte de los Andes Ecuatorianos (Tesis Doctoral). Universidad de Buenos Aires, Argentina.
  • Villarroel, M., Mandon, C., Viveiros, M.F., Guillen, D., Nelson, K., 2021. Soil CO2 emissions at Chiles volcano, Ecuador: Survey from Aguas Hediondas and Lagunas Verdes, in: AGU Fall Meeting Abstracts. pp. V41A-06.

 

Realizado por: D. Sierra, M. Almeida, S. Hidalgo
Revisado por: M. Ruiz
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

Actualización del estado del volcán Cotopaxi

Resumen
Desde el 21 de octubre del 2022, el volcán Cotopaxi ha venido registrando un nuevo periodo eruptivo. El fenómeno eruptivo más frecuente han sido las emisiones de ceniza, que fueron más intensas entre diciembre de 2022 y febrero de 2023, cuando se registraban hasta diez emisiones de ceniza por semana, la mayoría de ellas de baja altura (<1 km snc) y con bajo contenido de ceniza. Como consecuencia se han registrado varias caídas de ceniza en las inmediaciones del Parque Nacional Cotopaxi (PNC). En especial, las emisiones de los días 26 de noviembre, 20 de diciembre 2022, 18 de enero, 2-3, 18 y 27 de febrero 2023 fueron suficientemente energéticas como para producir caídas de ceniza en zonas pobladas especialmente en los cantones Quito, Mejía, Rumiñahui y Latacunga.

Sin embargo, desde finales del mes de febrero de 2023 se viene observando un descenso progresivo en las tendencias de los parámetros de vigilancia del volcán Cotopaxi, tanto en la actividad interna como en la superficial. A nivel interno, el cambio está marcado principalmente por una disminución en la cantidad de sismos diarios (tremores: asociados a emisiones de ceniza y LPs: asociados a movimiento de fluidos). A nivel superficial el cambio se ve reflejado, entre otros, por la disminución en el flujo y masa de dióxido de azufre (SO2) emitidos por el volcán a la atmósfera y por el descenso en la tasa de emisiones de ceniza y la cantidad de ceniza emitida. Por ejemplo, en la semana del 13 al 20 de marzo tan solo se registraron dos emisiones de ceniza, en comparación a las altas tasas de los meses de diciembre de 2022 - febrero de 2023. En general los parámetros de vigilancia muestran que la actual erupción del Cotopaxi va disminuyendo en su intensidad.

La evolución de esta actividad a mediano plazo es incierta, debido a la naturaleza misma de los fenómenos volcánicos. Sin embargo, ahora se considera que el escenario más probable a corto plazo (días a semanas) es que las emisiones de ceniza sean cada vez menos frecuentes, menos energéticas y que en general la intensidad de la erupción siga disminuyendo progresivamente. A pesar de este cambio de tendencia eruptiva, se recalca la importancia de mantener activo el sistema de vigilancia y continuar con las tareas de prevención asociadas a los escenarios eruptivos planteados para el volcán Cotopaxi. El IG-EPN se mantiene atento en caso de ocurrir cambios en las condiciones del volcán para poder ofrecer información oportuna a las autoridades y población en general.

Informe Volcánico Especial Cotopaxi No. 2023-002
Emisión de gases del volcán Cotopaxi. La fotografía fue tomada desde el nororiente durante un sobrevuelo provisto por la Fuerza Aérea Ecuatoriana el día 10 de marzo de 2023 (Foto: M. Almeida).


Anexo técnico-científico

Sismicidad
Desde el 19 de febrero de 2023 hasta la fecha de emisión de este informe, múltiples parámetros sísmicos han mostrado una disminución gradual en relación con los meses anteriores. Partiendo de que el proceso de fragmentación magmático que genera la emisión de ceniza causa episodios de tremor sísmico, la indicación más obvia y clara de un descenso en la actividad interna del Cotopaxi es la disminución gradual de la intensidad sísmica registrada en las últimas semanas debido a períodos de tiempo cada vez más prolongados sin emisión de ceniza (Figura 1).

Las emisiones actuales se componen principalmente de gas y vapor de agua, que no generan niveles de tremor sísmico comparables con la emisión de ceniza. Por lo tanto, existe una disminución global del proceso de fragmentación en profundidad que se ve reflejado en la disminución de tremor sísmico.

Informe Volcánico Especial Cotopaxi No. 2023-002
Figura 1: Amplitud sísmica medida en nm/s, corregidas por distancia a la fuente, y promediada en todas las estaciones disponibles de la red sísmica. Nótese el ascenso que tuvo hasta febrero 2023 (flecha negra) y la subsecuente disminución hasta el presente (flecha roja).


El número diario de sismos tipo LP, VT y VLP también ha mostrado un descenso desde mediados de febrero. Sin embargo, en la Figura 2, se muestra que la magnitud media de los eventos sísmicos localizados es la única que se mantiene en niveles relativamente altos con respecto a los datos observados desde octubre de 2022 hasta mediados de enero de 2023. Aunque las magnitudes medias de los eventos localizados no muestran la misma disminución obvia observada en el tremor, la contribución energética de estos eventos ha sido pequeña comparada a los periodos en los que el tremor sísmico era abundante. Estas dos observaciones (disminución del tremor sísmico y disminución de las tasas de eventos localizables) coinciden con una tendencia interna descendente para el comportamiento interno moderado.

Informe Volcánico Especial Cotopaxi No. 2023-002
Figura 2: Magnitud media y sus intervalos de confianza de los eventos localizados alrededor del volcán Cotopaxi. Las muestras de puntos azules se diferencian significativamente (95% de confianza) de las muestras de puntos rojos.


Deformación
Los procesos internos del volcán, como el ingreso de nuevo magma al sistema, producen el aumento de la presión y cambios en los estados de esfuerzos al interior del edificio volcánico. Estos fenómenos se manifiestan a nivel superficial como deformación del suelo, que son detectables por medio de instrumentos de alta precisión.

En la Figura 3, la franja en color amarillo señala el periodo de inflación iniciado en julio 2022, que fue registrado por las estaciones VC1G y MORU hasta mediados de enero de 2023. Sin embargo, en el transcurso del mes de febrero-marzo se ha podido observar un cambio de tendencia en la deformación. Los datos de posicionamiento (remarcados por la franja de color verde en la Figura 3) presentan una tasa estable (horizontal), indicando que el proceso de inflación se ha detenido y que tal vez empiece un proceso de deflación.

Informe Volcánico Especial Cotopaxi No. 2023-002
Figura 3. Serie temporal de la deformación, obtenida en base a datos de posicionamiento entre bases geodésicas del volcán Cotopaxi, entre enero de 2021 y febrero de 2023.


Nubes y caídas de cenizas
Desde octubre del 2022 se han registrado 108 emisiones de ceniza en el volcán Cotopaxi. En la Figura 4 se observa un descenso en el número de emisiones mensuales en los meses de febrero y marzo 2023. Mientras que en enero se registraron 38 emisiones de ceniza, en febrero este número bajó a 30 y hasta el 20 de marzo solamente se han registrado 7 emisiones de ceniza en el volcán Cotopaxi. Como consecuencia, la tasa actual de emisiones de ceniza del volcán Cotopaxi ha bajado a menos de una erupción cada dos días (tasa diaria de 0,35).

Informe Volcánico Especial Cotopaxi No. 2023-002
Figura 4. Número de emisiones de ceniza en el volcán Cotopaxi desde octubre del 2022. El eje izquierdo marca el total de emisiones registradas cada mes (barras grises), mientras que el derecho indica la tasa diaria (línea negra, número de emisiones del mes dividido por el número de días). Para marzo se tomaron en cuenta las emisiones registradas hasta el día 20 del mes.


En paralelo, el Centro de Avisos de Cenizas Volcánicas de Washington (W-VAAC por sus siglas en inglés) ha publicado 135 reportes de nubes de ceniza en el volcán Cotopaxi desde el 21 de octubre de 2022. Los mayores alcances fueron observados por satélites para las nubes de ceniza asociadas a la actividad del 26 de noviembre, 20 de diciembre, 26 y 30 de enero, y 10, 18 y 19 de febrero con más de 100 km de distancia desde el volcán. Por otro lado, las alturas máximas de las nubes de ceniza (mayor a 1.5 km sobre el cráter) fueron registradas los días 26 de noviembre, 13, 17, 19 y 30 de enero, 1 y 26 de febrero, y 19 de marzo. Debido a esta actividad, entre noviembre y febrero se reportó caída de ceniza leve desde varios sectores de los cantones Latacunga, Mejía, Rumiñahui y Quito; mientras que en el mes de marzo solo se reportó caída de ceniza en las faldas del volcán dentro del Parque Nacional Cotopaxi (Figura 5).

Informe Volcánico Especial Cotopaxi No. 2023-002
Figura 5. Proyección de las alertas W-VAAC registradas desde el 21 de octubre 2022 hasta el 20 de marzo de 2023 con los reportes de caída de ceniza recibidos en este periodo a través del grupo de vigías del volcán Cotopaxi, el PNC y de los informes de la SGR (figuras negras). Como se observa por los colores, la mayoría de las alertas se han dado entre finales de diciembre y febrero (colores amarillos a naranjas). Además, se observa la variabilidad de la dirección de los vientos para este periodo de tiempo.


La masa de caída de ceniza entre el 14 de febrero y el 14 de marzo de 2023 está estimada cerca de 100 millones de kg (Figura 6), lo que representa una disminución del ~50% comparando con el periodo anterior (17 de enero – 14 de febrero de 2023).

Informe Volcánico Especial Cotopaxi No. 2023-002
Figura 6. Masa de caída de ceniza en el volcán Cotopaxi para el periodo octubre 2022 - marzo 2023.


La ceniza de estas caídas fue muestreada, el material recolectado fue preparado para el análisis correspondiente en el laboratorio del IG-EPN. En la Figura 7 se indica la evolución de los porcentajes de los componentes que conforman la ceniza recolectada el 22 de octubre, 26 de noviembre, 20 de diciembre, 19 de enero y 8 de febrero. Los resultados muestran un incremento marcado en el aporte del material juvenil (material asociado al magma que está generando la actividad volcánica en superficie) entre octubre y diciembre 2022, mientras que entre diciembre y febrero el incremento de material juvenil ha sido más leve.

Informe Volcánico Especial Cotopaxi No. 2023-002
Figura 7. Evolución del contenido de material juvenil (material derivado del magma en erupción) en negro y accidental (material volcánico viejo) en rojo observado en las fracciones de 0.125 mm de las muestras de ceniza recolectadas mensualmente. En la parte inferior se indican unos ejemplos de material juvenil (café, negro a gris brillante) y material accidental (opaco, oxidado).


Termografía
Durante el último sobrevuelo realizado el 10 de marzo se obtuvieron nuevas secuencias termales del volcán. Las temperaturas máximas aparentes obtenidas en los campos fumarólicos son menores a 20 °C (Figura 8A), es decir bajas. Sin embargo, en esta ocasión se pudieron observar pequeñas anomalías en las grietas del glaciar nororiental (Figura 8A), que no han sido observadas anteriormente.

Durante este sobrevuelo se intentó de realizar observaciones del cráter del volcán, sin embargo, la presencia de gases volcánicos emitidos desde el mismo impidió que la cámara pueda obtener mediciones de temperatura, por cuanto las anomalías mostradas en la imagen son subestimadas y no superan los 10 °C (Figura 8B).

Informe Volcánico Especial Cotopaxi No. 2023-002
Figura 8. A. Imagen térmica del flanco nororiental del volcán Cotopaxi. B. Imagen térmica del cráter del volcán, en la parte inferior de esta figura se observan las anomalías asociadas a las fumarolas bajo la cumbre norte. A la derecha de la imagen se puede observar la escala de temperaturas asociadas a las imágenes térmicas.


Por otra parte, en base al análisis del registro de imágenes infrarrojas provenientes de la cámara ubicada en el volcán Rumiñahui (noroccidente del Cotopaxi), las temperaturas máximas aparentes (TMA) son relativamente bajas, respecto a las calculadas en las semanas precedentes, marcando una tendencia descendente (Figura 9). Sin embargo, las condiciones climáticas y la distancia entre la cámara y el volcán limitan las mediciones directas obtenidas desde el punto de vigilancia permanente.

Informe Volcánico Especial Cotopaxi No. 2023-002
Figura 9. Izquierda: Rango de visión y recuadro blanco del área de análisis en el campo fumarólico de Yanasacha, en la cámara infrarroja de Rumiñahui. Derecha: Serie de datos temporales de las temperaturas máximas aparentes (TMA) del campo fumarólico Yanasacha, bajo la cumbre norte del volcán. En puntos rojos, los valores de las medidas máximas válidas registradas (entre las 18h00 y 06h00, noche y madrugada; sin incidencia de radiación solar) y en negro, el valor de la media móvil en un período de 3 días, donde se observa una tendencia gradualmente decreciente para las dos últimas semanas.


Actividad superficial y desgasificación
La actividad superficial del volcán es vigilada a través de cámaras de vigilancia y sensores satelitales desde 2015 (Figura 10A). Desde el mes de febrero del 2023 la frecuencia de las emisiones de ceniza ha descendido y es mucho más notorio en el mes de marzo (Figura 10B). Sin embargo, las columnas de emisión de gas han mantenido sus alturas promedio entre 500 y 1000 metros sobre la cumbre, con ocasionales pulsos de hasta 2000 m (Figura 10B).

Informe Volcánico Especial Cotopaxi No. 2023-002
Figura 10. A. Serie temporal de las alturas máximas de las columnas de gas y ceniza observadas en el volcán Cotopaxi desde 2015 al presente. B. Ampliación a la actividad reciente desde el 1 de septiembre de 2022. Nótese la ausencia de barras rojas, emisiones de ceniza, durante el mes de marzo.


Desde octubre del 2022 se observó un incremento progresivo en los valores de flujo diario de SO2, mismos que se intensificaron en diciembre. Estos valores altos también fueron detectados por el sensor satelital TROPOMI (Sentinel-5SP). Desde el mes de febrero se ha caracterizado por mostrar una disminución paulatina del flujo y la masa de gas en estos dos parámetros de vigilancia (Figura 11).

Informe Volcánico Especial Cotopaxi No. 2023-002
Figura 11. Arriba: Masa de SO2 registrada por el instrumento satelital TROPOMI en barras de color verde (fuente Mounts). Abajo: En barras de color amarillo se representa el flujo máximo de dióxido de azufre diario registrado en las 4 estaciones DOAS del volcán Cotopaxi (Refugio Norte, Refugio Sur, Cami y San Joaquín). Gráfico actualizado hasta el 19 de marzo 2023.


Composición de los gases emitidos
La medición de especies gaseosas mayoritarias (agua - H2O, dióxido de carbono - CO2, dióxido de azufre - SO2 y ácido sulfhídrico - H2S) con el equipo MultiGAS (Aiuppa et al., 2004; Shinohara, 2005) ha mostrado que la razón de SO2/H2S mantiene una tendencia diferente a la registrada cuando el volcán tenía una mayor frecuencia en las emisiones de ceniza (Figura 12). Dicho cambio podría corresponder a una relajación del sistema magmático.

Informe Volcánico Especial Cotopaxi No. 2023-002
Figura 12. Serie temporal de las razones entre especies gaseosas SO2 /H2S, obtenidas gracias a las mediciones realizadas en los sobrevuelos de vigilancia al volcán desde el 26 de octubre de 2022 hasta el 10 de marzo de 2023.


Interpretación de datos
En base a la información disponible, se concluye que el volcán Cotopaxi tiene una actividad eruptiva de nivel moderado con tendencia descendente. El análisis conjunto de los diferentes parámetros de vigilancia muestra que la actividad reciente del Cotopaxi es provocada por la presencia de cuerpo de magma pequeño dentro del conducto volcánico el cual es el responsable de las emisiones de SO2 y ceniza reportados durante estos cinco meses de actividad. Hasta el momento NO hay evidencia que muestren el ingreso de un mayor volumen de magma hacia el sistema superficial. Al contrario, la evidencia actual sugiere que la erupción del Cotopaxi va disminuyendo en intensidad de forma consistente.

Los datos de vigilancia indican un descenso paulatino de la actividad superficial e interna del volcán. La actividad superficial se caracteriza por la emisión de columnas de gases y ceniza de entre 500 y 1000 metros sobre el nivel de la cumbre (m snc), y con valores máximos de 2500 m snc entre los meses de febrero y marzo. Los gases magmáticos, especialmente el SO2 son abundantes en la pluma volcánica, pero muestran un descenso progresivo desde febrero tanto en los instrumentos permanentes como en los datos satelitales. A nivel interno, la sismicidad sigue dominada por sismos de tipo LP, VLP y episodios de tremor cada vez menos energéticos; mientras que la deformación muestra una tendencia estable variando en un rango de 2 mm desde febrero de este año.


Pronósticos a corto plazo de la actividad del volcán Cotopaxi
(Actualización 10/03/2023)

Nota de descargo: Los pronósticos a corto plazo se definen en función de la evolución de la actividad reciente del volcán Cotopaxi y presentan los principales fenómenos susceptibles de producirse. El grupo técnico-científico del Instituto Geofísico de la EPN actualiza periódicamente estos pronósticos para un periodo de días a semanas. En el caso de un proceso aproximadamente estacionario, no habrá cambios en los pronósticos. Los pronósticos están sujetos a cambios rápidos si se detectan anomalías en los parámetros de vigilancia volcánica. Los fenómenos naturales como las erupciones volcánicas son impredecibles en cuanto a su magnitud y cronología, por lo que los pronósticos son sólo una guía para la toma de decisiones por parte de las autoridades y de la comunidad en general. Los pronósticos pueden diferir de los escenarios de los mapas de amenaza volcánica en función de las condiciones actuales. El orden de los pronósticos no está basado en cálculos sino en función de las conclusiones de la evaluación de la actividad reciente del volcán.

Pronósticos a corto plazo (días a semanas) de la actividad del volcán Cotopaxi

  1. Más probable: la erupción del Cotopaxi se mantiene en nivel moderado con una tendencia a seguir disminuyendo su intensidad. Se espera la ocurrencia de esporádicas columnas eruptivas <2 km sobre la cumbre y caídas de ceniza a nivel del Parque Nacional Cotopaxi (PNC), o en casos excepcionales a nivel cantonal (principalmente Latacunga y Mejía), dependiendo de la dirección y velocidad del viento. Escenario referencial en los mapas de amenazas volcánicas del Cotopaxi: escenario 1 (índice de explosividad volcánica VEI 1).
  2. Menos probable: la erupción del Cotopaxi registra un nuevo aumento gradual de la actividad, produciendo columnas eruptivas de altura entre 2-4 km sobre el cráter y caídas de ceniza de impacto cantonal a provincial (principalmente Cotopaxi, Pichincha), similar a lo observado entre noviembre del 2022 y enero del 2023. La acumulación de material podría provocar lahares secundarios de tamaño pequeño ocasionados por la removilización de la ceniza recién depositada debido a fuertes lluvias, afectando únicamente las inmediaciones del PNC. Escenario referencial en los mapas de amenazas volcánicas del Cotopaxi: escenario 1 (índice de explosividad volcánica VEI 1-2); actividad histórica similar: 2015.
  3. Muy poco probable: la erupción del Cotopaxi registra aumento rápido y significativo de la actividad interna y superficial del volcán con columnas eruptivas altas (>8 km sobre el cráter) y caídas de ceniza a nivel nacional, flujos piroclásticos y lahares primarios procedentes del derretimiento parcial del glaciar. Escenarios referenciales en los mapas de amenazas volcánicas del Cotopaxi: escenarios 3 y 4 (índice de explosividad volcánica VEI≥3); actividad histórica similar: 1877


Elaborado por:

Marco Almeida Vaca, Daniel Andrade, Anais Vásconez, Francisco J. Vasconez, Stephen Hernández, Pablo Palacios, Fernanda Naranjo, Marco Yépez, Daniel Sierra, Benjamin Bernard, Josué Salgado, Marco Córdova.
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

Actualización del estado del volcán Cotopaxi

Resumen
Desde el 21 de octubre del 2022, las estaciones instaladas en los flancos del volcán Cotopaxi registraron el inicio de un nuevo periodo eruptivo. Desde entonces se han registrado emisiones de ceniza, la mayoría de ellas son de baja altura (<1 km snc) y de bajo contenido de ceniza y provocan caída de ceniza en las inmediaciones del Parque Nacional Cotopaxi (PNC), y las poblaciones ubicadas al WSW del volcán. Dentro de este periodo también se ha tenido emisiones de ceniza más intensas y más duraderas, que han provocado caída de ceniza en zonas más pobladas más distantes, especialmente en los cantones Quito, Mejía, Rumiñahui y Latacunga (26 de noviembre, 20 de diciembre 2022, 18 de enero, 2-3 de febrero y 14 de febrero 2023). Los parámetros de sismicidad y deformación se mantienen en niveles moderados, pero con una tendencia ligeramente ascendente; mientras que la desgasificación fue intensa hasta enero 2023, pero ha descendido levemente desde febrero.

Esta reactivación volcánica tiene un origen magmático evidenciado por las grandes cantidades de dióxido de azufre emitido a la atmósfera y por el porcentaje alto de componente juvenil en la ceniza recolectada. Las emisiones de ceniza son cada vez más frecuentes, pero hasta el momento no han llegado a los niveles más intensos observados durante la erupción de agosto-noviembre 2015.

La evolución de esta actividad a mediano plazo es incierta, debido a la naturaleza misma de los fenómenos volcánicos. Sin embargo, a corto plazo (días a semanas) el escenario más probable es que las emisiones de ceniza se repitan y/o se intensifiquen sin mostrar mayores signos precursores. En este sentido es importante mantener activo el sistema de vigilancia y continuar con las tareas de prevención y mitigación relacionadas con los escenarios eruptivos del volcán Cotopaxi.

Informe Volcánico Especial Cotopaxi No. 2023-001
Emisión de gases y ceniza del volcán Cotopaxi. La fotografía fue tomada desde el sur durante el sobrevuelo provisto por las Fuerzas Armadas del día 02 de febrero de 2023 (Foto: M. Almeida).


Anexo técnico-científico

Sismicidad
Desde el mes de octubre 2022 hasta la fecha, la sismicidad muestra un incremento paulatino en el número de eventos diarios (LP, VT y VLP) y en la energía liberada (Figura 1). La mayor parte de la energía se manifiesta en forma de tremor el cual está asociado a la emisión continua de ceniza. Pese a que los valores se han ido incrementando en el tiempo, estos son bajos en comparación a la actividad más energética registrado durante el proceso eruptivo del Cotopaxi en 2015.

El martes 14 de febrero de 2023 se alcanzó los valores máximos de energía sísmica, que a nivel superficial se manifestó como emisión de ceniza de carga leve a moderada y que provocó caída de ceniza en las poblaciones más cercanas al volcán en el cantón Latacunga

Informe Volcánico Especial Cotopaxi No. 2023-001
Figura 1. Amplitud sísmica medido en cuentas registrado por la estación BREF. Nótese que la energía liberada se ha ido incrementando paulatinamente desde octubre 2022 hasta el presente.


Además, los eventos sísmicos localizados al interior del volcán muestran magnitudes cada vez más grandes. La serie de tiempo del promedio de dichas magnitudes se presenta en la Figura 2. Los datos más recientes (puntos azules) en la parte derecha muestran cambios significativos respecto a datos pasados (puntos rojos). Esta serie verifica que desde octubre 21 se tiene un incremento progresivo en la intensidad de tales eventos.

Informe Volcánico Especial Cotopaxi No. 2023-001
Figura 2. Serie de tiempo de la magnitud media de eventos localizados. Los cambios son significativos (con error menor al 5%) entre muestras azules y rojas (muestras de 30 eventos).


Deformación
Los procesos internos del volcán, como el ingreso de nuevo magma al sistema, producen el aumento de las presiones y esfuerzos al interior del edificio volcánico. Estos fenómenos se manifiestan a nivel superficial con la deformación del suelo, presentando desplazamientos, que son detectables únicamente por medio de instrumentos de alta precisión.

Para el volcán Cotopaxi, el IG-EPN realiza constantemente el procesamiento de datos de posicionamiento gracias a los instrumentos cGPS (Sistemas de Posicionamiento Global Continuos) y a los inclinómetros de alta precisión instalados en el volcán. Adicionalmente, se realiza el análisis de desplazamientos por medio de imágenes de radar satelital, procesadas con el método InSAR (Interferometría de Radar de Apertura Sintética).

La Figura 3 corresponde a un mapa de velocidades, obtenido por InSAR, en base a una compilación de imágenes de la misión Sentinel-1 de la Agencia Espacial Europea (ESA), adquiridas entre marzo de 2022 y febrero de 2023. Como resultado, en el lado occidental del volcán (elipse de color rojo en el mapa) se observan áreas representadas en colores entre naranja – rojo, indicando desplazamientos positivos con respecto a la Línea de Observación del Satélite (LOS). Este patrón se interpreta como deformación o inflación en el flanco occidental del volcán, y ha sido detectado levemente desde agosto del año anterior y se mantiene hasta la actualidad.

Informe Volcánico Especial Cotopaxi No. 2023-001
Figura 3. Mapa de velocidades obtenido por el método InSAR, en base a imágenes Sentinel-1 de órbita ascendente en el volcán Cotopaxi, entre marzo 2022 y febrero 2023. Las velocidades registradas se representan de acuerdo a la escala de colores que se presenta en la parte inferior derecha del mapa.


De forma similar, los datos de posicionamiento (cGPS) demuestran que se continúa registrando desplazamientos entre las bases de monitoreo (instrumentos instalados en el volcán). Estos desplazamientos forman un patrón de inflación que se inició entre julio y agosto del año anterior y que se mantiene hasta el presente.

Informe Volcánico Especial Cotopaxi No. 2023-001
Figura 4. Serie temporal de las posiciones relativas entre las bases cGPS del volcán Cotopaxi VC1G y MORU, ubicadas en los flancos nororiental y suroccidental, respectivamente. Cada circunferencia en color azul representa un promedio de 4 días de las posiciones relativas entre las bases. El periodo resaltado en color rojo destaca la inflación registrada durante el periodo eruptivo del año 2015. La línea segmentada en color rojo señala las explosiones del 14 de agosto de ese mismo año. Finalmente, la zona remarcada en color amarillo resalta el patrón de inflación que se viene registrando en los cGPS desde el segundo semestre del 2022 hasta febrero de 2023.


En conclusión, la deformación observada por métodos geodésicos indica que a partir del año anterior el sistema volcánico fue perturbado por el ingreso de magma. Este ingreso presenta una velocidad de baja magnitud de 8 mm/año observado por los cGPS y de 15 mm/año en la zona de mayor deformación de acuerdo con InSAR; manteniéndose estable y sin presentar hasta el momento señales de aceleración.


Nubes y caídas de cenizas

El número de emisiones de ceniza del volcán Cotopaxi se ha incrementado significativamente, especialmente para los meses de diciembre y enero (Figura 5). Mientras que en octubre se registró apenas una emisión de ceniza y en la última semana de noviembre se registraron 5, durante los meses de diciembre y enero el número de emisiones de ceniza se incrementó hasta 27 y 38, respectivamente. Como consecuencia, la tasa de emisiones de ceniza del volcán Cotopaxi sobrepasó una emisión por día durante el mes de enero. En lo que va del mes de febrero, se han registrado 13 emisiones de ceniza en 13 días, indicando un promedio de una emisión de ceniza al día. En total, desde octubre 2022 se han registrado 84 emisiones de ceniza en el volcán Cotopaxi. Sin embargo, solo tres de ellas han sido lo suficientemente grandes como para causar afectación leve en las provincias de Pichincha y Cotopaxi.

Informe Volcánico Especial Cotopaxi No. 2023-001
Figura 5. Número de emisiones de ceniza en el volcán Cotopaxi desde octubre del 2022. El eje izquierdo marca el total de emisiones registradas cada mes (barras grises), mientras que el derecho indica la tasa diaria (línea negra, número de emisiones del mes dividido por el número de días). Para el mes de febrero se tomaron en cuenta las emisiones registradas hasta el 13 de febrero.


En paralelo, el Centro de Avisos de Cenizas Volcánicas de Washington (W-VAAC por sus siglas en inglés) ha reportado 105 nubes de ceniza desde el 21 de octubre de 2022. Los mayores alcances fueron observados para las nubes de ceniza asociadas a la actividad del 26 de noviembre, 20 de diciembre, 26 y 30 de enero, y 10 de febrero con más de 100 km de distancia desde el volcán. Por otro lado, las alturas máximas de las nubes de ceniza (> 1.5 km sobre el cráter) fueron registradas los días 26 de noviembre, 13, 17, 19 y 30 de enero, y 1 de febrero. Debido a esta actividad se reportó caída de ceniza desde varios sectores de los cantones Latacunga, Mejía, Rumiñahui y Quito (Figura 6).

Informe Volcánico Especial Cotopaxi No. 2023-001
Figura 6. Proyección de las alertas W-VAAC registradas desde el 23 de noviembre 2022 hasta el 13 de febrero de 2023 con los reportes de caída de ceniza recibidos en este periodo a través del grupo de vigías del volcán Cotopaxi, el Parque Nacional Cotopaxi y de los informes de la Secretaría de Gestión de Riesgos (figuras negras). Como se observa por los colores, la mayoría de las alertas se han dado desde finales de diciembre (colores amarillos a rojizos). Además, se observa la variabilidad de la dirección de los vientos para este periodo de tiempo, dándose una distribución radial de la ceniza.


La ceniza de estas caídas fue muestreada y el material recolectado preparado para su correspondiente análisis de laboratorio. En la Figura 7 se indica la evolución de los porcentajes de los componentes que conforman la ceniza del 21 de octubre, 26 de noviembre, 20 de diciembre y 19 de enero. Los resultados muestran un continuo incremento en el aporte del material juvenil (material asociado al magma que está generando la actividad volcánica en superficie).

Informe Volcánico Especial Cotopaxi No. 2023-001
Figura 7. Evolución del contenido de material juvenil (material derivado del magma en erupción) en negro y accidental (material volcánico viejo) en rojo observado en las fracciones de 0.125 mm de las muestras de ceniza recolectadas mensualmente. En la parte inferior se indican unos ejemplos de material juvenil (café, negro a gris brilloso) y material accidental (opaco, oxidado).


Termografía
Durante el último sobrevuelo realizado el 2 de febrero de 2023 se obtuvieron nuevas secuencias termales del volcán. Las temperaturas obtenidas en la columna de ceniza son las más altas (52 °C) detectadas desde el inicio de la erupción el 21 de octubre de 2022. No se observaron anomalías en las grietas del glaciar, y los campos fumarólicos no han cambiado su temperatura habitual (aprox. 30 °C).

Informe Volcánico Especial Cotopaxi No. 2023-001
Figura 8. Izquierda: fotografía de rango visible desde el flanco sur del volcán Cotopaxi. Derecha: Imagen térmica correspondiente donde se puede observar en colores amarillos las zonas con mayor temperatura.


Desgasificación y medidas de dióxido de azufre (SO2)
Desde octubre 2022 se observa un incremento progresivo en los valores de flujo de SO2 diario obtenidos gracias a la red de instrumentos DOAS, los mismos que se intensificaron en diciembre (Figura 9) y disminuyen levemente desde enero 2023. Los valores altos de flujo de SO2 y números de medidas válidas registrados desde octubre 2022 son similares a los registrados durante la erupción de 2015. Estos valores altos también son detectados por el sensor satelital TROPOMI (Sentinel-5SP). En el panel intermedio de la Figura 9 se muestra las emisiones de SO2 medidas en la atmósfera alrededor del Cotopaxi por este instrumento satelital. Desde octubre se registra este gas en la atmósfera llegando a valores altos desde finales de noviembre hasta mediados de enero, posteriormente los valores se reducen (hasta 14 de febrero; Figura 10). Al comparar los datos de gases con las alturas máximas de las columnas de emisión se constata que la red DOAS tiene mejor detección para las columnas de menor altura, mientras que el satélite observa mejor las emisiones de SO2 asociado a columnas más altas.

La Figura 9 también presenta el registro de las observaciones de brillo en el cráter y de anomalías termales gracias a imágenes satelitales y las cámaras visuales del IG-EPN. Estas no se han presentado desde el mes de febrero, posiblemente debido a las condiciones de nubosidad alrededor del cráter del volcán.

Informe Volcánico Especial Cotopaxi No. 2023-001
Figura 9. Superior: Altura de las emisiones de gas, en azul, y de ceniza, en rojo, del volcán Cotopaxi, observadas gracias a la red de cámaras visuales instaladas alrededor del volcán. Registro de brillo y anomalías termales en el cráter.


Intermedio: Masa de SO2 registrada por el instrumento satelital TROPOMI (fuente MOUNTS). Inferior: Máximo flujo de dióxido de azufre (SO2) diario registrado en las 4 estaciones del volcán Cotopaxi (Refugio Norte, Refugio Sur, Cami y San Joaquín). Actualizado hasta el 8 de febrero 2023.

Las imágenes de TROPOMI permiten generar un mapa de la distribución promedio de SO2 en la atmósfera. Se ha realizado una superposición de las imágenes para un periodo mensual. En la Figura 10 se observa un incremento progresivo de la cantidad de SO2 emitido por el volcán Cotopaxi hasta diciembre 2022 y una ligera disminución durante el mes de enero y febrero 2023 (no en la imagen). Además, se observa la emisión de SO2 para los volcanes Reventador y Sangay que también se encuentran en erupción.

Informe Volcánico Especial Cotopaxi No. 2023-001
Figura 10. Masa de SO2 presente en la atmósfera sobre los volcanes Cotopaxi, Sangay y Reventador. Las imágenes representan la emisión promedio mensual (Base Google Engine Code Editor, Script: C. Laverde-SGC).


La medición de especies gaseosas mayoritarias con el equipo MultiGAS han mostrado un cambio en la tendencia de las razones (CO2/SO2 y SO2 /H2S). Dicho cambio responde a una inyección de nuevo magma, más rico en CO2 y SO2 en el conducto del volcán (Figura 11). Este parámetro se conjuga con la observación de mayor porcentaje de material juvenil en las muestras de ceniza, así como el aumento de la temperatura de la columna de emisión. Las especies gaseosas mayoritarias medidas por este instrumento son: agua - H2O, dióxido de carbono - CO2, dióxido de azufre - SO2 y ácido sulfhídrico - H2S.

Informe Volcánico Especial Cotopaxi No. 2023-001
Figura 11. Fotografía de la columna de gas medida durante el sobrevuelo del 2 de febrero de 2023, en el recuadro se puede observar los picos de los gases volcánicos (SO2, H2S) detectados, a partir de los cuales se obtienen las diferentes razones: CO2/SO2 y SO2 /H2S.


Interpretación de datos

En base a la información disponible, se concluye que el volcán Cotopaxi tiene una actividad eruptiva de nivel moderado. El análisis conjunto de los diferentes parámetros de vigilancia muestra que la actividad reciente del Cotopaxi está provocada por la presencia de magma en el conducto volcánico.

Los datos de vigilancia indican un incremento paulatino de la actividad superficial e interna. La superficial se caracteriza por la emisión de columnas de gases y ceniza alcanzando hasta un máximo de 3000 metros sobre el nivel de la cumbre (msnc). Los gases magmáticos, especialmente el SO2 son abundantes en la pluma volcánica. A nivel interno, la sismicidad sigue dominada por sismos de tipo LP y VLP y episodios de tremor cada vez más energéticos; mientras que la deformación muestra una leve tendencia inflacionaria detectable en los flancos del volcán asociado al ascenso de magma nuevo reconocible en las partículas de ceniza.

 

Pronósticos a corto plazo de la actividad del volcán Cotopaxi
(Actualización 15/02/2023)

Nota de descargo: Los pronósticos a corto plazo se definen en función de la evolución de la actividad reciente del volcán Cotopaxi y presentan los principales fenómenos susceptibles de producirse. El grupo técnico-científico del Instituto Geofísico de la EPN actualiza periódicamente estos pronósticos para un periodo de días a semanas. En el caso de un proceso aproximadamente estacionario, no habrá cambios en los pronósticos. Los pronósticos están sujetos a cambios rápidos si se detectan anomalías en los parámetros de vigilancia volcánica. Los fenómenos naturales como las erupciones volcánicas son impredecibles en cuanto a su magnitud y evolución, por lo que los pronósticos son sólo una guía para la toma de decisiones por parte de las autoridades y del público. Los pronósticos pueden diferir de los escenarios de los mapas de amenaza volcánica en función de las condiciones actuales. El orden de los pronósticos no está basado en cálculos sino en función de las conclusiones de la evaluación de la actividad reciente del volcán.


Pronósticos a corto plazo de la actividad del volcán Cotopaxi

  1. Más probable: se mantiene el nivel de actividad moderado con columnas eruptivas <4 km sobre el cráter y caídas de ceniza a nivel cantonal (principalmente Latacunga y Mejía), dependiendo de la dirección y velocidad del viento. Lahares secundarios pequeños a moderados pueden formarse por la removilización de la ceniza recién depositada debido a fuertes lluvias o derretimiento de nieve en las zonas altas del volcán. Escenario referencial en los mapas de amenazas volcánicas del Cotopaxi: escenario 1 (índice de explosividad volcánica VEI1-2); actividad histórica similar: 2015.
  2. Menos probable: aumento gradual de la actividad a un nivel alto con columnas eruptivas de altura entre 4-8 km sobre el cráter y caídas de ceniza a nivel provincial (principalmente Cotopaxi, Pichincha y Napo), posibles explosiones y lahares secundarios en las inmediaciones del Parque Nacional Cotopaxi. Escenario referencial en los mapas de amenazas volcánicas del Cotopaxi: escenario 2 (índice de explosividad volcánica VEI2-3); actividad histórica similar: 1853-1854.
  3. Muy poco probable: aumento rápido y significativo de la actividad interna y superficial del volcán con columnas eruptivas altas (>8 km sobre el cráter) y caídas de ceniza a nivel nacional, flujos piroclásticos y lahares primarios procedentes del derretimiento parcial del glaciar. Escenarios referenciales en los mapas de amenazas volcánicas del Cotopaxi: escenarios 3 y 4 (índice de explosividad volcánica VEI≥3); actividad histórica similar: 1877.


Elaborado por:

Francisco J. Vásconez, Marco Almeida, Anais Vásconez, Marco Yépez, Pablo Palacios, Benjamin Bernard, Silvana Hidalgo.
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

Incremento progresivo en la actividad superficial e interna del volcán Cotopaxi

Informe Volcánico Especial Cotopaxi No. 2022-005
Emisión de gases del volcán Cotopaxi tomada durante el sobrevuelo provisto por las Fuer-zas Armadas el 19 de diciembre de 2022 (Foto: M. Almeida).


Resumen
El día 21 de octubre a las 19h44 TL, las estaciones sísmicas instaladas en los flancos del volcán Cotopaxi registraron una señal sísmica de tremor de frecuencia de 2-8 Hz, larga duración y pequeña amplitud. Esta señal estuvo acompañada por la emisión de gases y ceniza, produciendo una caída moderada de este material en el Refugio José Ribas. Desde entonces se han generado dos caídas de ceniza con mayor alcance, afectando hasta 60 km de distancia con respecto al volcán. Estos eventos de mayor alcance ocurrieron los días 26 de noviembre y 20 de diciembre del año en curso. Las nubes de ceniza alcanzaron hasta 2.2 km sobre el nivel del cráter y se han dirigido principalmente hacia el nor-noroccidente por lo que se tuvo reportes de caídas de ceniza en los cantones Mejía, Rumiñahui y Quito. Además, se observa la emisión casi continua de gases desde el cráter del volcán alcan-zando una altura variable entre 200 y 2800 m. Los parámetros de sismicidad y deforma-ción se mantienen en niveles moderados mientras que la desgasificación es intensa, tanto la registrada por la red de sensores permanentes en tierra del Instituto Geofísico de la Escuela Politécnica Nacional como por los instrumentos satelitales. Adicionalmente, ins-trumentos satelitales han detectado anomalías termales en el cráter del volcán que cada vez son más frecuentes (última anomalía 22 de diciembre 2022).

Esta reactivación volcánica tiene un origen magmático evidenciado por las grandes canti-dades de dióxido de azufre emitido a la atmósfera y por el porcentaje alto de componente juvenil en la ceniza recolectada. Las emisiones de ceniza son cada vez más frecuentes, pero hasta el momento no han llegado a los niveles observados durante la erupción de agosto-noviembre 2015.

La evolución de esta actividad a mediano plazo es incierta, debido a la naturaleza misma de los fenómenos volcánicos. Sin embargo, a corto plazo (días a semanas) el escenario más probable es que las emisiones de ceniza se repitan y/o se intensifiquen sin mostrar signos precursores; pero sin llegar a los niveles observados en la erupción de 2015. En este sentido es importante mantener activo el sistema de vigilancia y continuar con las tareas de prevención y mitigación relacionadas con los escenarios eruptivos del volcán Cotopaxi. El IG-EPN se mantiene atento a cambios en las condiciones presentadas por el volcán para dar información oportuna a las autoridades y la población en general.

 

Anexo técnico-científico

Sismicidad
Desde el mes de octubre hasta la fecha, la sismicidad muestra un incremento en el núme-ro de eventos diarios del tipo LP (largo período; asociados al movimiento de fluidos; Figu-ra 1) y el registro de sismos de tipo VLP (muy largo periodo).

Informe Volcánico Especial Cotopaxi No. 2022-005
Figura 1. Gráfico de barras mostrando el número diario de eventos sísmicos registrados en el volcán Cotopaxi entre los años 1996 y 2022. El tipo de evento está identificado por color (véase la leyenda). Nótese el incremen-to de sismos de tipo LP desde octubre 2022 (barras moradas).


Desde el 21 de octubre se ha registrado un total de 27 emisiones de ceniza, las cuales han tenido asociadas señales de tremor (2-8 Hz). Dos de estas emisiones han provocado caídas de ceniza a nivel provincial, el 26 de noviembre y el 20 de diciembre.

La amplitud (cuentas/energía) de los tremores sísmicos relacionados con estas dos emi-siones de ceniza son menores en comparación a los episodios registrados durante el pro-ceso eruptivo de 2015.

El martes 20 de diciembre de 2022, las estaciones sísmicas del volcán Cotopaxi registra-ron una señal de tremor de emisión de ceniza, desde las 00h21 TL, misma que fue confir-mada por las imágenes satelitales de GOES-16 y reportado en el IG AL INSTANTE VOLCÁN COTOPAXI No. 2022-031. Esta señal sísmica se mantuvo por 5 horas. El tremor inició de manera progresiva y alcanzó un valor máximo de amplitud a las 02h17 TL (Figura 2). Pos-teriormente, se observó un descenso paulatino en la amplitud sísmica hasta aproximada-mente las 05h15 TL. Este episodio de emisión de ceniza fue diferente al tremor registrado el 26 de noviembre de 2022 el cual inició y finalizó de forma abrupta (Figura 3).

Informe Volcánico Especial Cotopaxi No. 2022-005
Figura 2. RSAM (en cuentas) de las estaciones del Volcán Cotopaxi en las frecuencias 2-8 Hz corres-pondientes a la emisión de ceniza registrada en la madrugada del martes 20 de diciembre de 2022. El RSAM es una medida de la amplitud de la señal sísmica.


Informe Volcánico Especial Cotopaxi No. 2022-005
Figura 3. RSAM (en cuentas) de las estaciones del Volcán Cotopaxi en las frecuencias 2-8 Hz. Correspondientes a la emisión de ceniza registrada en la madrugada del sábado 26 de noviembre de 2022.


La Figura 4 muestra el tremor de emisión con las formas de onda en tres estaciones (BREF, VC2 y BTAM) y sus correspondientes espectros. La coincidencia en la frecuencia corresponde a un pico espectral máximo de 3.97 Hz. Lo que indica que la señal corres-ponde a un proceso de la fuente y que la presencia de picos secundarios debe ser atribui-da a procesos que ocurren durante el camino por el que atraviesa la señal sísmica.

Informe Volcánico Especial Cotopaxi No. 2022-005
Figura 4. Formas de onda del tremor de emisión detectados en tres estaciones sísmicas durante el evento del 20 de diciembre del 2022. Izq. Formas de onda en color rojo. Der. Espectros de onda en color azul.


Deformación
Para el análisis de deformación del suelo, se realiza periódicamente el procesamiento de estaciones cGPS que están ubicadas en los flancos altos del volcán y de imágenes satelitales procesadas con el método InSAR.

Para el análisis de deformación, se realiza el procesamiento interferométrico de imáge-nes de Radar de Apertura Sintética (InSAR), de la constelación de satélites de Sentinel-1 de la Agencia Espacial Europea (ESA). Se procesaron las órbitas ascendentes y descenden-tes utilizando datos del portal LiCSAR (https://comet.nerc.ac.uk/comet-lics-portal/) y la serie temporal con el software LiCSBAS (Morishita et al., 2020).

La Figura 5 muestra el mapa de deformación acumulada en los componentes vertical y horizontal de la zona del volcán Cotopaxi. El periodo de análisis es desde el 1 de enero del 2019 hasta el 11 de diciembre del 2022. Los resultados muestran una tendencia de de-formación positiva en el componente horizontal al nororiente del volcán, mientras que en el componente vertical no se observan mayores cambios. Este procesamiento se realizó en la Universidad de Leeds (Reino Unido) que mantiene estrecha cooperación con el Insti-tuto Geofísico.

Informe Volcánico Especial Cotopaxi No. 2022-005
Figura 5. Mapa de los componentes vertical y horizontal de deformación acumulada obtenida por el método InSAR, en base a imágenes Sentinel-1 de órbita descendente y ascendente en el volcán Cotopaxi, entre el 01 de enero del 2019 y el 11 de diciembre del 2022.


Adicionalmente, la variación relativa de las posiciones diarias registradas por la red de bases cGPS (continuos global positioning system) del volcán Cotopaxi (Figura 6) muestran una tendencia ligeramente ascendente que inicia entre julio y agosto 2022 y que se man-tiene hasta la actualidad (área remarcada en color amarillo). Esta tendencia indica que las bases geodésicas están distanciándose progresivamente. Por la ubicación de las bases (en el flanco nororiental y suroccidental, respectivamente), el incremento de la distancia entre estas estaciones fijas implica un aumento milimétrico en el diámetro del edificio volcánico, el cual responde a un patrón radial de deformación denominado “inflación”, cuya velocidad media es de aproximadamente 8 mm/año. Los patrones de deformación registrados por los cGPS son similares a los obtenidos por el método InSAR.

Informe Volcánico Especial Cotopaxi No. 2022-005
Figura 6. Serie temporal de las posiciones relativas entre las bases cGPS del volcán Cotopaxi VC1G y MORU, ubicadas en los flancos nororiental y suroccidental, respectivamente. Cada circunferencia en color azul repre-senta un promedio de 4 días de las posiciones relativas entre bases. La zona resaltada en color rojo indica la inflación registrada durante el periodo eruptivo del año 2015. La línea segmentada en color rojo señala las explosiones del 14 de agosto de ese mismo año. Finalmente, la zona remarcada en color amarillo resalta el patrón de inflación que se viene registrando en los cGPS durante el segundo semestre del 2022.


Nubes y caídas de cenizas
Como se puede observar en la Figura 7, el número de emisiones de ceniza del volcán Co-topaxi se ha incrementado significativamente en los últimos dos meses. Mientras que en octubre se registró apenas una emisión de ceniza, en la última semana de noviembre el número subió a 5, y durante el mes de diciembre se incrementó hasta 22 emisiones de ceniza. Como consecuencia, la tasa diaria de emisiones de ceniza es de 0.96, indicando que en promedio hay una emisión de ceniza al día en el volcán Cotopaxi. Sin embargo, solo dos de ellas han sido lo suficientemente grandes como para causar afectación leve en la población.

Informe Volcánico Especial Cotopaxi No. 2022-005
Figura 7. Número de emisiones de ceniza en el volcán Cotopaxi desde septiembre del 2022. El eje izquierdo marca el total de emisiones registradas cada mes (barras grises), mientras que el derecho indica la tasa diaria (línea negra, número de emisiones del mes dividido por el número de días). Para el mes de diciembre se toma-ron en cuenta las emisiones registradas hasta hoy, 23 de diciembre.


En paralelo, el Centro de Avisos de Cenizas Volcánicas de Washington (W-VAAC por sus siglas en inglés) ha reportado varias nubes de ceniza desde el 21 de octubre. Los mayores alcances fueron observados para las nubes de ceniza asociadas a la actividad del 26 de noviembre y 20 de diciembre con 60 km de distancia en dirección nor-noroccidente. Las alturas de estas dos fueron de 2.2 km y 1.5 km sobre el nivel del cráter, respectivamente. Debido a esta actividad se reportó caída de ceniza desde varios sectores de los cantones Mejía, Rumiñahui y Quito (Figura 8).

Informe Volcánico Especial Cotopaxi No. 2022-005
Figura 8. Proyección de las alertas W-VAAC registradas desde el 21 de octubre hasta el 23 de diciembre de 2022 con los reportes de caída de ceniza recibidos en este periodo a través del grupo de monitoreo del IG-EPN y de los informes del SNGRE (imágenes de personas). Como se observa por los colores, la mayoría de las alertas se han dado desde finales de noviembre (colores amarillos a rojizos). Además, se observa la variabilidad de la dirección de los vientos para este periodo de tiempo.


La ceniza de estas caídas fue muestreada y el material recolectado preparado para su correspondiente análisis de laboratorio. En la Figura 9A se indica la evolución de los por-centajes de los componentes que conforman la ceniza de la primera caída que ocurrió el 21 de octubre y de la segunda del 26 de noviembre. Los resultados muestran un ligero incremento en el aporte del material juvenil (material asociado al magma que está gene-rando la actividad volcánica en superficie) para la caída de ceniza del 26 de noviembre. La muestra de la caída de ceniza del 20 de diciembre se encuentra en etapa de procesa-miento y análisis para poder completar la serie temporal de componentes y estudiar la evolución del actual proceso eruptivo. Además, gracias a la colaboración con el laborato-rio Magmas y Volcanes de Clermont-Ferrand (Francia), se tomaron imágenes de electro-nes retrodifusos (Figura 9B) con una microsonda electrónica con el objetivo de observar las texturas y de determinar la química del vidrio volcánico. Este análisis muestra que el magma actualmente en erupción es más básico que el magma que salió durante el perio-do eruptivo de 2015.

Informe Volcánico Especial Cotopaxi No. 2022-005
Figura 9. A. Evolución del contenido de material juvenil (material derivado del magma en erupción) en negro y accidental (material volcánico viejo) en rojo observado en las fracciones de 125 µm de las muestras de ceniza recolectadas el 21 de octubre (COT-22-01) y el 26 de noviembre (COT-22-08). B. Imagen del material juvenil observado con microsonda electrónica.


Anomalías térmicas satelitales
Desde el 21 de octubre los sistemas satelitales MIROVA, MOUNTS y FIRMS han detectado claramente anomalías térmicas en el volcán Cotopaxi. En las imágenes más reciente de Sentinel-2 del 17 y 22 de diciembre 2022 se observa un pequeño punto caliente en el crá-ter debajo de la emisión de gas (Figura 10). Este punto caliente ha sido observado de ma-nera repetitiva desde 2015, pero la frecuencia de observación se ha incrementado te-niéndose 7 anomalías en los últimos 2 meses, registradas por los sistemas satelitales mencionados anteriormente.

Informe Volcánico Especial Cotopaxi No. 2022-005
Figura 10. Izquierda: Imágenes satélite Sentinel 2 (Bandas visible 12, 11, 8A / 20 m de resolución) del punto caliente en el cráter del Cotopaxi del 17 de diciembre 2022 en un cuadro de 2 y 10 km de escala. Derecha: Con-teo automático de las anomalías térmicas (puntos rojos) basadas en dichas imágenes, desde el 18 de octubre de 2022 y diciembre 2020 (fuente MIROVA y MODIS Thermal volcanic activity).


Mediante fotografías colectadas durante el sobrevuelo realizado el 19 de diciembre se pudo constatar la presencia de ceniza cubriendo toda la parte superior del volcán y parte de los flancos sur, sur oriental y sur occidental. Este material volcánico es el resultado de las emisiones de gases y ceniza reportadas en los últimos días. Debido a la continua salida de gases no se tuvo observaciones directas de la parte interna del cráter (Figura 11). Por otro lado, mediante imágenes térmicas tomadas con una cámara infrarroja portátil, se estimó que las temperaturas más altas están al interior del cráter con un valor de 45°C, este valor es subestimado debido que la parte superior del cráter está llena de gases. Por otro lado, las temperaturas de los campos fumarólicos externos e internos del cráter no sobrepasan los 25°C. Estos valores de temperatura están dentro de los rangos medidos en el presente periodo eruptivo, es decir desde el 21 de octubre de 2022.

Informe Volcánico Especial Cotopaxi No. 2022-005
Figura 11. Imágenes obtenidas en el sobrevuelo el 19 de diciembre 2022 provisto por el Grupo Tucanes de la FAE. Izq. Fotografía del cráter del volcán Cotopaxi cubierto de ceniza. Der. Imagen térmica correspondiente y que muestra en colores más claros las temperaturas más altas y que se encuentran en el interior cráter, cuyos valores se considera subestimados debido a la presencia de gases.


Desgasificación y medidas de dióxido de azufre (SO2)
Desde octubre 2022 se observa un claro incremento en los valores de flujo de SO2, los mismos que se intensifican en los primeros días de diciembre (Figura 12). Estos valores altos de SO2 son similares a los reportados en el 2015. Este mismo patrón de incremento se observa en el número de medidas válidas, indicando que desde el mes de octubre el SO2 está de manera permanente en la atmósfera. Los valores de emisión de SO2 también son medidos gracias al instrumento TROPOMI en el satélite Sentinel-5SP. En el panel in-termedio de la Figura 12 se muestra las emisiones de SO2 medidas en la atmósfera alre-dedor del Cotopaxi por este instrumento satelital. Se ve claramente la aparición de medi-das desde octubre y un incremento en los valores de SO2 desde el mes de noviembre. En conjunto, los datos satelitales y los provistos por la red DOAS indican un incremento de la emisión de SO2 del volcán Cotopaxi. Adicionalmente, al comparar estos datos con las altu-ras de las columnas de emisión se constata que la red DOAS tiene mejor detección para las columnas de menor altura, mientras que el satélite observa mejor el SO2 asociado a columnas de mayor altura.

Informe Volcánico Especial Cotopaxi No. 2022-005
Figura 12. Superior: Altura de las emisiones de gas en azul y de ceniza en rojo del volcán Cotopaxi, observadas gracias a la red de cámaras visuales instaladas alrededor del volcán. Intermedio: Masa de SO2 registrada por el instrumento satelital TROPOMI (fuente Mounts). Inferior: Máximo flujo de dióxido de azufre (SO2) diario regis-trado en las 4 estaciones del volcán Cotopaxi (Refugio Norte, Refugio Sur, Cami y San Joaquín). Actualizado hasta el 20 de diciembre 2022.


Las imágenes de TROPOMI permiten generar un mapa de la distribución promedio de SO2 en la atmósfera. Se ha realizado una superposición de las imágenes para un periodo de quince días en octubre, 30 días en noviembre y 20 días en diciembre. En la Figura 13 se observa claramente un incremento de la cantidad de SO2 emitida por el volcán Cotopaxi. En las imágenes también se nota la emisión de SO2 para los volcanes Reventador y Sangay que también se encuentran en erupción.

Informe Volcánico Especial Cotopaxi No. 2022-005
Figura 13. Masa de SO2 presente en la atmósfera sobre los volcanes Cotopaxi, Sangay y Reventador. Las imá-genes representan la emisión promedio en un periodo tiempo variable (Base Google Engine Code Editor, Script: C. Laverde-SGC).


Desde la emisión de ceniza del 21 de octubre 2022 se realiza mediciones periódicas de otras especies gaseosas con un equipo MultiGAS (Aiuppa et al., 2004; Shinohara, 2005). A través de sobrevuelos y ascensos a la cumbre se realizaron mediciones de las especies gaseosas mayoritarias emitidas (Agua: H2O, Dióxido de carbono: CO2, Dióxido de azufre: SO2 y Ácido sulfhídrico: H2S). Durante el último sobrevuelo del 19 de diciembre 2022 se realizaron 3 cortes a la pluma de gas, un ejemplo de uno de ellos se puede ver en la Figura 14. Desde el inicio de las mediciones, la razón SO2/H2S ha mostrado un incre-mento progresivo que indica una reducción del sistema hidrotermal del volcán frente a una predominancia de los gases de origen magmático.

Informe Volcánico Especial Cotopaxi No. 2022-005
Figura 14. Fotografía de la columna de gas medida durante el sobrevuelo del 19 de diciembre de 2022, en el recuadro se puede observar los picos de los gases volcánicos (CO2, SO2) detectados, a partir de los cuales se obtiene la razón CO2/SO2.


Interpretación de datos

En base a la información disponible, se concluye que el volcán Cotopaxi presenta al mo-mento una actividad eruptiva de nivel moderado. El análisis conjunto de los diferentes parámetros de vigilancia muestra que la actividad reciente del Cotopaxi está provocada por la presencia de magma en el conducto volcánico. Sin embargo, hasta el momento no hay evidencia de un ingreso de un mayor volumen de magma hacia el sistema.

Los datos de monitoreo indican un incremento paulatino de la actividad superficial carac-terizada mayormente por columnas de gases y vapor de agua alcanzando hasta 2800 me-tros sobre el cráter (m snc), además de una ocurrencia cada vez más frecuente de emi-siones de ceniza de más de 1000 m snc. La sismicidad sigue dominada por pequeños sis-mos de tipo LP y la aparición esporádica de eventos VLP; la deformación muestra una leve tendencia inflacionaria detectable en los flancos del volcán, en el componente horizontal; y los gases magmáticos, especialmente el SO2 son abundantes en la pluma volcánica.

 

Escenarios Eruptivos para el Volcán Cotopaxi
(Actualización 21/12/2022)

En base a lo presentado anteriormente, se propone tres escenarios eruptivos para el corto plazo (días a semanas). Los escenarios uno y dos tienen mayor posibilidad de ocurrir, mientras el escenario número tres es mucho menos posible. Los escenarios han sido ela-borados en base a la información de monitoreo que se dispone al momento de la publica-ción de este informe. Estos escenarios pueden ir evolucionando, dependiendo de lo que se observa en los parámetros de vigilancia.

1. Las emisiones de ceniza que iniciaron el 21 de octubre de 2022 van aumentando en frecuencia y/o altura, al igual que las emisiones de gases volcánicos. Lo más probable es que este tipo de eventos se repita o intensifique en el corto plazo (días a semanas), sin mostrar signos precursores, pero sin llegar a los niveles observados en la erupción de 2015. Al momento no hay evidencias fehacientes de nuevas inyecciones de magma en zonas profundas que pudieren derivar en una erupción de mayor magnitud. En este esce-nario es muy posible observar nuevas erupciones pequeñas acompañadas de señales sís-micas de tremor de larga duración (horas) y emisiones de ceniza similares a las ocurridas el 26 de noviembre y el 20 de diciembre. Dependiendo de la dirección y la velocidad de los vientos estas emisiones de ceniza podrían causar afectación leve en áreas relativa-mente cercanas al volcán.

2. Las emisiones de ceniza se intensifican hasta llegar a niveles similares a los observados en el periodo eruptivo del 2015. Este escenario podría darse en el corto/mediano plazo y se esperaría observar una tendencia claramente ascendente en los parámetros de moni-toreo (especialmente en la deformación y la actividad sísmica). Dependiendo de las con-diciones de velocidad y dirección del viento, estas emisiones de ceniza causarían una ma-yor afectación en los centros poblados, particularmente en las provincias de Cotopaxi, Pichincha y Napo. Además, debido a las lluvias en el sector, pueden generarse lahares secundarios que afectarían las inmediaciones del Parque Nacional Cotopaxi como lo ob-servado en la erupción de 2015. Afectando principalmente la vía al refugio en el sector de la quebrada Agualongo.

3. Las emisiones de gases volcánicos y ceniza aumentan de forma acelerada en el cor-to/mediano plazo, así como otros parámetros de monitoreo (deformación y actividad sís-mica), con evidencias claras de inyecciones profundas o de transporte acelerado de magma hacia la superficie, lo que en conjunto representaría los precursores de una fase eruptiva mucho mayor a la observada en 2015. Por ahora este escenario se considera como muy poco probable, por la falta de evidencias de aumento acelerado de los pará-metros de monitoreo y de actividad superficial. Las explosiones y emisiones de ceniza en este escenario serían mucho más grandes que las observadas en 2015 y tendrían una afectación regional, es decir, puede haber caída de ceniza en las provincias de Cotopaxi, Pichincha, Napo, Los Ríos, Manabí y otras, dependiendo de la velocidad y dirección del viento. Además, la caída fuerte de ceniza puede interrumpir la circulación vehicular entre las provincias de Pichincha y Cotopaxi, contaminar fuentes de agua potable y de riego, y afectar la distribución eléctrica. Adicionalmente, se pueden formar flujos piroclásticos de diferentes tamaños que derritan parte del glaciar y desencadenen lahares primarios en los principales drenajes del volcán, tal como se muestra en los mapas de peligros zona norte, sur y oriente (Mothes et al., 2016b, 2016a; Vásconez et al., 2015).

 

Referencias

Aiuppa, A., Burton, M., Murè, F., Inguaggiato, S., 2004. Intercomparison of volcanic gas monitor-ing methodologies performed on Vulcano Island, Italy. Geophysical Research Letters 31.
IG-EPN, 2022. IG AL INSTANTE VOLCÁN COTOPAXI No. 2022-031. Quito-Ecuador. Disponible en: https://informes.igepn.edu.ec/igepn-registro-web/pages/public/InformeGenerado.jsf?directorio=28978
Mothes, P., Espin, P., Hall, M.L., Vásconez, F., Sierra, D., Córdova, M., Santamaría, S., Marrero, J., Cuesta, R., 2016a. Actualización Mapa de Amenazas del Volcán Cotopaxi, Zona Sur.
Mothes, P., Espin, P., Hall, M.L., Vásconez, F., Sierra, D., Marrero, J., Cuesta, R., 2016b. Actualiza-ción Mapa de Amenazas del Volcán Cotopaxi, Zona Norte.
Shinohara, H., 2005. A new technique to estimate volcanic gas composition: plume measure-ments with a portable multi-sensor system. Journal of Volcanology and Geothermal Re-search 143, 319–333.
Vásconez, F., Sierra, D., Andrade, D., Almeida, M., Marrero, J., Hurtado, J., Mothes, P., Bernard, B., Encalada, M., 2015. Mapa Preliminar de Amenazas Potenciales del Volcán Cotopaxi- Zo-na Oriental.
Lazecký, M., Spaans, K., González, P. J., Maghsoudi, Y., Morishita, Y., Albino, F., et al. (2020). LiCSAR: An automatic InSAR tool for measuring and monitoring tectonic and volcanic activity. Remote Sensing, 12(15), 2430. https://doi.org/10.3390/rs12152430
Morishita, Y., Lazecky, M., Wright, T. J., Weiss, J. R., Elliott, J. R., & Hooper, A. (2020). LiCSBAS: An open-source InSAR time series analysis package integrated with the LiCSAR automated Sentinel-1 InSAR processor. Remote Sensing, 12(3), 424. https://doi.org/10.3390/rs12030424

 

Elaborado por:
S. Hidalgo, M. Almeida, A. Vásconez. F.J. Vasconez, M. Yepez, M. Córdova, S. Vallejo, A. García. D. Sierra, P. Espín Bedón, S. Vaca, D. Andrade, Jean-Luc Devidal, M. Ruiz, B. Bernard.
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

Actualización de la actividad interna y superficial del volcán Cotopaxi

Resumen

Se establece que actualmente el Cotopaxi ha iniciado un nuevo proceso eruptivo de baja intensidad, que por ahora presenta un nivel incluso menor a lo ocurrido entre agosto y diciembre de 2015. Las tendencias observadas en los parámetros de monitoreo indican que un cuerpo de magma relativamente desgasificado podría localizarse en zonas poco profundas debajo de la cumbre del Cotopaxi y que por el momento no hay evidencias claras de una recarga de un magma profundo. Adicionalmente, indican que el Cotopaxi actualmente funciona como un sistema abierto desde esas profundidades, en el cual las emisiones de ceniza pequeñas pueden iniciarse de forma repentina y sin señales premonitoras. Es importante recalcar que por ahora solamente se observa un claro incremento de los parámetros de monitoreo asociados a la emisión de gases volcánicos y nubes de ceniza.


Antecedentes

Los días 21 de octubre, y 24 y 26 de noviembre del 2022 se registraron emisiones de ceniza en el volcán Cotopaxi, todas acompañadas por una señal de tremor sísmico, como fue descrito en los Informes Volcánicos Especiales No 001, 002 y 003 (IGEPN, 2022a, 2022b, 2022c). Mientras que la caída de ceniza asociada a los dos primeros eventos se restringió a las inmediaciones del volcán, las condiciones climáticas, en particular la dirección y velocidad de los vientos, permitieron a la ceniza emitida el 26 de noviembre alcanzar los cantones Mejía y Quito (Provincia de Pichincha), a más de 80 km de distancia al volcán.

Informe Volcánico Especial Cotopaxi No. 2022-004
Figura 1.- Cotopaxi Cámara de monitoreo la Merced (26/11/2022). Se observa una emisión de gases y cenizas en dirección NNE.


Anexo técnico-científico

La observación y análisis de los parámetros de monitoreo, desde el mes de octubre hasta el momento de la publicación de este informe, indican las siguientes observaciones para los diferentes parámetros de monitoreo.


Análisis de Sismicidad

Las emisiones de ceniza observadas durante este periodo no han estado precedidas por incrementos en el número o tamaño de los eventos sísmicos. Solamente el tremor sísmico que las acompaña inicia y finaliza de forma abrupta (Figura 2).

Informe Volcánico Especial Cotopaxi No. 2022-004
Figura 2.- RSAM de las estaciones del Volcán Cotopaxi en las frecuencias 2-8Hz. Correspondientes a la emisión de ceniza registrada en la madrugada del domingo 26 de noviembre de 2022.


Deformación

Los inclinómetros y la red de estaciones GPS del Instituto Geofísico de la Escuela Politécnica Nacional registran una muy leve deformación del suelo con un patrón radial, indicando un movimiento de aproximadamente 2 mm desde el mes de agosto en la componente Norte (ver figura 3). Debido a que estos valores son cercanos al nivel de ruido de fondo, aún no es posible hacer interpretaciones respecto a este parámetro.

Informe Volcánico Especial Cotopaxi No. 2022-004
Figura 3.- Desplazamiento en mm (10-3 m) entre las estaciones cGPS VC1G y MORU, la serie de tiempo incluye los datos desde 2011 hasta el presente, la anomalía causada por el periodo eruptivo del Cotopaxi en 2015 es claramente visible. Así mismo, la imagen inferior muestra un zoom a los datos desde enero 2021, se puede ver un cambio en la tendencia desde más o menos agosto de 2022 que se podría interpretar como una tendencia de desplazamiento al norte (Imágen: M. Yépez / IGEPN).


Columnas de emisión de gases

Las emisiones de vapor de agua y gases observadas en el volcán Cotopaxi han incrementado su altura en las últimas semanas, alcanzando alturas de hasta 2.8 km sobre la cumbre el día 27 de noviembre de 2022, en clara relación con el aumento en las medidas de gases (Figura 4).

Informe Volcánico Especial Cotopaxi No. 2022-004
Figura 4.- Línea de tiempo de las emisiones de gas y ceniza en el volcán Cotopaxi Observadas desde la cámara de monitoreo Sincholagua, desde Octubre de 2022 hasta el 30 de noviembre de 2022 (Imagen: J.F. Vásconez).


Desgasificación

Las estaciones DOAS (Figura 5) y el sensor satelital TROPOMI (Figura 6) registran un incremento marcado en la emisión del gas magmático dióxido de azufre (SO2) en el volcán Cotopaxi. Mediante varios sobrevuelos en las últimas semanas los técnicos del IG-EPN también pudieron medir las razones entre los gases CO2, SO2 y H2S para constatar que los gases emitidos por el volcán Cotopaxi provienen de un magma relativamente desgasificado y poco profundo (3-4 km bajo la cumbre).

Informe Volcánico Especial Cotopaxi No. 2022-004
Figura 5.- La imagen superior muestra la sumatoria del número de medidas válidas registradas por la red de instrumentos DOAS desplegada en el Volcán Cotopaxi. Se observa una clara tendencia creciente desde mediados de octubre de 2022. La imagen inferior muestra en la misma escala el conteo de sismos de largo período (LP) por día para la estación de referencia BREF (Imagen: M. Almeida, V. Lema/ IG-EPN).


Informe Volcánico Especial Cotopaxi No. 2022-004
Figura 6.- El primer gráfico muestra la línea de tiempo de las emisiones de SO2 detectadas por TROPOMI desde el 15/19/2022 hasta el presente, (fuente Mounts PBL 1km; Imagen J.F Vásconez/ IGEPN). El segundo gráfico muestra una imagen TROPOMI para el 26 de noviembre de 2022, la masa total de SO2 es de 3293.8 ton.


Se realizó medición de razones gaseosas con un equipo Multigas (Aiuppa et al., 2004; Shinohara, 2005). A través de sobrevuelos (Figura 7) y ascensos a la cumbre del Volcán Cotopaxi se ha podido realizar mediciones de las especies gaseosas mayoritarias emitidas utilizando el equipo MultiGAS (Agua: H2O, Dióxido de carbono: CO2, Dióxido de azufre: SO2 y Ácido sulfhídrico: H2S). Durante el último sobrevuelo del 28/11/2022 se realizaron 3 cortes a la pluma de gas, un ejemplo de uno de ellos se puede ver en el recuadro de la Figura 7. Las razones CO2/SO2 se mantienen estables, sin embargo, la razón SO2/H2S ha mostrado un incremento desde su primera medición el 27 de octubre hasta la medición realizada durante este sobrevuelo triplicándose su valor. Estas razones continúan mostrando un origen magmático en la proveniencia de los gases.

Informe Volcánico Especial Cotopaxi No. 2022-004
Figura 7.-Derecha, vista del flanco suroriental del volcán desde los 6500 m snm. En el recuadro se puede observar el pico generado por los gases presentes en la pluma durante la transecta. Izquierda, personal del IG-EPN dentro del avión Twin Otter, realizando actividades de medición de gases y termografía (Fotos: M. Almeida, D. Sierra /IG-EPN).


Vigilancia Térmica
Durante el mes de noviembre, las imágenes térmicas obtenidas a través de sobrevuelos, con drones y con una cámara de banda infrarroja fija en Rumiñahui no muestran cambios significativos en las temperaturas medidas en el volcán, en lo que va del mes de noviembre el sistema de registro de anomalías termales FIRMS ha contabilizado 3 anomalías termales en el cráter del volcán Cotopaxi: una el día 1 de noviembre, dos el 28 y dos el 29 de noviembre. Ver figura 8.

Informe Volcánico Especial Cotopaxi No. 2022-004
Figura 8.- Fotografía del cráter del volcán e imagen térmica correspondiente tomada desde el suroccidente. Las imágenes fueron adquiridas durante el sobrevuelo de monitoreo realizado en el avión Twin Otter de la FAE la mañana del día 28 de noviembre de 2022. La imagen térmica muestra en colores amarillo- naranjado las zonas más calientes con temperaturas que no superan los 40 °C (Imágenes: M. Almeida, S. Vallejo/ IGEPN).


Nubes y caídas de cenizas
El Centro de Avisos de Cenizas Volcánicas de Washington (W-VAAC por sus siglas en inglés) reportó una difusa nube de ceniza visible en el satélite GOES-16 dirigida hacia el norte (Figura 9) a las 05h00 TL el 26 de noviembre (10h00 UTC) con una altura estimada entre 0.8 km sobre el nivel de la cumbre del Cotopaxi (6.7 km sobre el nivel del mar).

Informe Volcánico Especial Cotopaxi No. 2022-004
Figura 9.- Aviso de nube de ceniza de las 10h00 UTC del 26/11/2022 (fuente: W-VAAC).


Adicionalmente, un estudio detallado de la caída de ceniza del 26 de noviembre indica una dispersión hacia el nor-noroccidente (Figura 10) con una carga máxima en el Parque Nacional Cotopaxi (172 g/m2) equivalente a una caída moderada. El SNGRE reportó una caída leve en los cantones Quito y Mejía de la provincia de Pichincha. La masa total del depósito estimado con el mapa de isomasas y fórmulas empíricas (Bonadonna and Costa, 2013; Bonadonna and Houghton, 2005; Fierstein and Nathenson, 1992; Legros, 2000; Pyle, 1989) es de 7-20 × 106 kg.

Informe Volcánico Especial Cotopaxi No. 2022-004
Figura 10.- Mapa de caída ceniza del volcán Cotopaxi, 26 de noviembre de 2022. 1: Isomasa de 10 g/m2 sin tomar en cuenta la muestra de Uyumbicho; 2: isomasa de 10 g/m2 considerando la muestra de Uyumbicho (40,6 g/m2). Los valores obtenidos en las zonas de Lasso han sido descartados debido a procesos de contaminación (vegetación, insectos y polvo de la carretera).


Adicionalmente, el análisis de la distribución granulométrica realizado con tamizaje manual (entre 1000 y 63 µm) y difracción láser (entre 5000 y 0.03 µm) en la muestra de Uyumbicho muestra que la ceniza es extremadamente fina (tamaño medio 0.053 mm) y bimodal (modo grueso a 136 µm y modo fino a 15 µm; Figura 11). Las cantidades de ceniza inhalable (PM100 = <100 µm, pueden ingresar al sistema respiratorio), torácica (PM10 = <10 µm; puede ingresar a los pulmones) y respirable (PM4 = <4 µm; puede ingresar en los alvéolos), indican que la ceniza tiene un potencial patológico moderado.

Informe Volcánico Especial Cotopaxi No. 2022-004
Figura 11.- Distribución granulométrica de la muestra recolectada en Uyumbicho el 26/11/2022 (tamizaje: Anaís Vásconez y Edwin Telenchana; difracción láser: Benjamin Bernard; síntesis y deconvolución: Benjamin Bernard; software deconvolución DECOLOG 6.0).


Escenarios Eruptivos para el Volcán Cotopaxi
(Actualización 28/11/2022)

En base a lo presentado anteriormente, se proponen tres escenarios eruptivos para el corto plazo (días a semanas). Los escenarios 1 y 2 tienen mayor probabilidad de ocurrir, mientras el escenario número tres es mucho menos probable. Los escenarios han sido elaborados en base a la información que se dispone al momento de la publicación de este informe. Estos escenarios pueden ir evolucionando dependiendo de lo que se observa en los parámetros de monitoreo.

  1. Las emisiones de ceniza observadas a partir del 21 de octubre de 2022 corresponden a eventos similares a otros ocurridos durante estos últimos 7 años, por ejemplo, el del 27 de noviembre de 2021. Sin embargo, su frecuencia y magnitud ha aumentado sensiblemente, en relación directa al aumento de las emisiones de gases volcánicos. Lo más probable es que este tipo de eventos se repita e intensifique en el corto plazo (días a semanas), sin mostrar signos precursores, pero sin llegar a los niveles de 2015. En este escenario se esperaría que esta actividad llegue a un pico en el corto plazo y luego empiece a descender, debido a que hoy en día no hay evidencias de nuevas inyecciones de magma en zonas profundas. En este escenario es muy posible observar nuevas emisiones de ceniza pequeñas acompañadas de señales sísmicas de tremor similares a las ocurridas el 21 de octubre, 24 y 26 de noviembre. Dependiendo de la dirección y la velocidad de los vientos estas emisiones de ceniza podrían causar afectación leve en áreas cercanas al volcán.
  2. Las emisiones de ceniza se intensifican hasta llegar a niveles similares a los observados a finales del año 2015. Este escenario se considera menos probable y en el mismo se esperaría observar una tendencia claramente ascendente en los parámetros de monitoreo (especialmente en la deformación y la actividad sísmica) y que los mismos se aceleran en el corto plazo. Hoy en día hay pocas evidencias de que esto esté sucediendo en el Cotopaxi. Dependiendo de las condiciones de velocidad y dirección del viento, estas emisiones de ceniza causarían una mayor afectación en los centros poblados, particularmente en las provincias de Cotopaxi, Pichincha y Napo. Además, debido a las lluvias en el sector, pueden generarse lahares secundarios que afectarían las inmediaciones del Parque Nacional Cotopaxi como lo observado en la erupción de 2015. Afectando principalmente la vía al refugio en el sector de la quebrada Agualongo.
  3. Las emisiones de gases volcánicos y ceniza aumentan de forma acelerada en el corto plazo, así como otros parámetros de monitoreo (deformación y actividad sísmica), con evidencias claras de inyecciones profundas o de transporte acelerado de magma hacia la superficie, lo que en conjunto representaría los precursores de una fase eruptiva mucho mayor a la observada en 2015. Por ahora este escenario se considera como muy poco probable, por la falta de evidencias de aumento acelerado de los parámetros de monitoreo y de actividad superficial. Las explosiones y emisiones de ceniza en este escenario serían mucho más grandes que las observadas en 2015 y tendrían una afectación regional, es decir, puede haber caída de ceniza en las provincias de Cotopaxi, Pichincha, Napo, Los Ríos, Manabí y otras, dependiendo de la velocidad y dirección del viento. Además, la caída fuerte de ceniza puede interrumpir la circulación vehicular entre las provincias de Pichincha y Cotopaxi, contaminar fuentes de agua potable y de riego, y afectar la distribución eléctrica. Adicionalmente, se pueden formar flujos piroclásticos de diferentes tamaños que derritan parte del glaciar y desencadenan lahares primarios en los principales drenajes del volcán, tal como se muestra en los mapas de peligros zona N, S y E (Mothes et al., 2016b, 2016a; Vásconez et al., 2015).

 

Referencias
Aiuppa, A., Burton, M., Murè, F., Inguaggiato, S., 2004. Intercomparison of volcanic gas monitoring methodologies performed on Vulcano Island, Italy. Geophysical Research Letters 31.
Bonadonna, C., Costa, A., 2013. Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function. Bulletin of Volcanology 75, 1–19.
Bonadonna, C., Houghton, B.F., 2005. Total grain-size distribution and volume of tephra-fall deposits. Bulletin of Volcanology 67, 441–456.
Fierstein, J., Nathenson, M., 1992. Another look at the calculation of fallout tephra volumes. Bulletin of volcanology 54, 156–167.
IGEPN, 2022a. Informe Volcánico Especial –Cotopaxi–2022-N° 001. Quito-Ecuador.
IGEPN, 2022b. Informe Volcánico Especial –Cotopaxi–2022-N° 002. Quito-Ecuador.
IGEPN, 2022c. Informe Volcánico Especial –Cotopaxi–2022-N° 003. Quito-Ecuador.
Legros, F., 2000. Minimum volume of a tephra fallout deposit estimated from a single isopach. Journal of Volcanology and Geothermal Research 96, 25–32.
Mothes, P., Espin, P., Hall, M.L., Vásconez, F., Sierra, D., Córdova, M., Santamaría, S., Marrero, J., Cuesta, R., 2016a. Actualización Mapa de Amenazas del Volcán Cotopaxi, Zona Sur.
Mothes, P., Espin, P., Hall, M.L., Vásconez, F., Sierra, D., Marrero, J., Cuesta, R., 2016b. Actualización Mapa de Amenazas del Volcán Cotopaxi, Zona Norte.
Pyle, D.M., 1989. The thickness, volume and grainsize of tephra fall deposits. Bulletin of Volcanology 51, 1–15.
Shinohara, H., 2005. A new technique to estimate volcanic gas composition: plume measurements with a portable multi-sensor system. Journal of Volcanology and Geothermal Research 143, 319–333.
Vásconez, F., Sierra, D., Andrade, D., Almeida, M., Marrero, J., Hurtado, J., Mothes, P., Bernard, B., Encalada, M., 2015. Mapa Preliminar de Amenazas Potenciales del Volcán Cotopaxi- Zona Oriental.

 

A. Vásconez, D. Andrade, D. Sierra, M. Almeida, M. Yépez., S. Hidalgo, B. Bernard, P. Mothes, S. Vaca, M. Ruiz
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

Antecedentes

La noche del 21 de octubre de 2022 se registró una señal de tremor de baja frecuencia asociada a una emisión de gases y ceniza que produjo una ligera caída de material volcánico en el flanco norte del volcán Cotopaxi, incluyendo el Refugio José Rivas.

Desde entonces, las emisiones de vapor y gases han sido casi continuas y visibles claramente, con columnas que han alcanzado hasta 2 km sobre el nivel del cráter.

Los parámetros vigilados por el IG-EPN muestran una actividad ligeramente superior al nivel referencial establecido desde el fin del período eruptivo del Cotopaxi en noviembre 2015. Las observaciones de los parámetros de monitoreo hasta el día 22 de noviembre de 2022 han sido recopiladas en el Informe Volcánico Especial – Cotopaxi– 2022- N° 002. En este informe se concluyó que “el análisis conjunto de los diferentes datos de vigilancia muestra que la actividad actual del Cotopaxi está provocada por la presencia de magma en el conducto volcánico”.


Desarrollo

El día viernes 25 de noviembre de 2022, desde las 18h48 TL, las estaciones sísmicas del volcán Cotopaxi registraron una señal de tremor asociado a una emisión de gases, con dirección NNW, la cual fue visible a través de imágenes satelitales GOES-16. El IG-EPN reportó esta actividad a través del IG al instante VOLCÁN COTOPAXI No. 2022-010.

Informe Volcánico Especial Cotopaxi No. 2022-003
Figura 1.- RSAM de las estaciones del Volcán Cotopaxi en las frecuencias 2-8Hz. Correspondientes a la emisión de ceniza registrada en la madrugada del sábado 26 de noviembre de 2022. El RSAM es una medida de la amplitud de la señal sísmica.


Más tarde en la madrugada del día de hoy, 26 de noviembre, desde aproximadamente las 03h10 TL se registró un nuevo episodio de tremor asociado a la emisión de gases y ceniza. Si bien en un principio la nube de ceniza no se extendía muy lejos de las inmediaciones del volcán, posteriormente la emisión fue mucho más duradera que los pulsos anteriores, extendiéndose por varias horas (Figura 1). Favorecida por los vientos dirigidos hacia el NNW, la ceniza viajó más de 85 km desde la fuente (Figura 2 y 3) por lo que se tuvieron reportes de caída de ceniza en los sectores de: El Pedregal, Tambillo, Guamaní, Amaguaña, Chillogallo, Quitumbe, Solanda, Lloa, Conocoto, Mercado Mayorista, Villaflora y Rumipamba.

Informe Volcánico Especial Cotopaxi No. 2022-003
Figura 2.- Emisión de ceniza del Volcán Cotopaxi en Dirección NNW. Cámara de la Merced 05h53TL.


Informe Volcánico Especial Cotopaxi No. 2022-003
Figura 3.- Imagen Satelital GOES-16 mostrando la dirección de la pluma de ceniza al NNW, se puede ver como se ha desplazado sobre la ciudad de Quito, así cubriendo una distancia de 85 km.


Al momento de emisión de este informe la actividad superficial del volcán Cotopaxi ha disminuido, pero continúa, sin embargo, la actividad sísmica interna, marcada por el tremor sísmico de tamaño moderado, se mantuvo hasta las 10:50 TL, para descender a niveles de base. Debemos recalcar que esta actividad se enmarca dentro de los escenarios eruptivos emitidos en el informe previamente emitido y es catalogada como: Interna Moderada Tendencia Ascendente y Superficial Moderada Tendencia Ascendente.

El IG-EPN se mantiene vigilando el evento eruptivo leve e informará oportunamente en caso de detectar cambios en la actividad volcánica. Se recomienda tomar las medidas pertinentes y recibir la información de fuentes oficiales.


Recomendaciones en caso de caídas de ceniza

La ceniza puede resultar peligrosa para la salud. Puede irritar la piel y sobre todo causar problemas oculares y respiratorios. Los niños, personas con problemas respiratorios y ancianos son especialmente vulnerables.

Lo más importante en caso de caídas de ceniza es no salir al exterior a menos que sea estrictamente necesario, debemos permanecer en casa y cerrar bien puertas y ventanas. Si vamos a salir es necesario usar pantalón largo, guantes, calzado cerrado, ropa de manga larga y gorra o sombrero pues la ceniza puede causar irritación en la piel y el cuero cabelludo. Es fundamental proteger nuestras vías respiratorias con una mascarilla o en su defecto un pañuelo húmedo. Es también de vital importancia utilizar protectores oculares que tengan un buen selle hermético, se sugiere gafas de seguridad industrial o lentes para natación.

 

D. Sierra, D. Pacheco, P. Samaniego, P. Mothes, M. Ruiz, S. Hidalgo
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

Actualización de la actividad interna y superficial del volcán Cotopaxi

Informe Volcánico Especial Cotopaxi No. 2022-002
Emisión de gases del volcán Cotopaxi. Fotografía tomada desde el suroriente del volcán durante el sobrevuelo realizado el 20 de noviembre de 2022 (Foto: M. Almeida).


Resumen

La noche del 21 de octubre se registró una señal de tremor de baja frecuencia asociada a una emisión de gases y ceniza que produjo una caída moderada de este material en el flanco norte del volcán, incluido el Refugio José Rivas. Desde entonces, la emisión de gases ha sido casi continua y visible claramente, con columnas que han alcanzado hasta 2 km sobre el nivel del cráter. Los parámetros vigilados por el IG-EPN muestran que el Cotopaxi aún permanece con una actividad interna baja, marcada por una sismicidad ligeramente superior al nivel referencial desde 2015. Las estaciones cGPS presentan una posible deformación, cuya magnitud en algunas estaciones apenas sobrepasa los niveles de ruido atmosférico. En cuanto a los gases volcánicos, los valores permanecen por sobre el nivel referencial posterior a la erupción de 2015 y tienen un origen magmático. Las medidas de temperatura del cráter muestran valores similares a los posteriores a 2015.

La incertidumbre con respecto a la evolución de esta actividad es muy grande debido a la falta de señales premonitoras claras para eventos similares al ocurrido el 21 de octubre. En este sentido es importante mantener activo el sistema de vigilancia y continuar con las tareas de prevención y mitigación relacionadas con los escenarios eruptivos del volcán Cotopaxi. El IG-EPN se mantiene atento a cambios en las condiciones presentadas por el volcán para dar, en lo posible, información oportuna a las autoridades y la población en general.

 

Anexo técnico-científico

Análisis de Sismicidad
Las tasas actuales de sismicidad del volcán Cotopaxi se han caracterizado en función de las tendencias presentes en los últimos dos años y de las observadas en el mes posterior a la emisión de ceniza del 21 de octubre. Para esto, extraemos los eventos con magnitudes > 1 localizados por nuestra red entre diciembre de 2020 y la fecha actual (Figura 1A). Se observa que, en términos de localización, la mayor parte de la sismicidad se produce directamente bajo la cumbre del volcán. Sin embargo, también hay un grupo de sismos caracterizado como probables réplicas del sismo de Machachi del 27 de octubre de 2020 (06h59 T.L). Este grupo de sismos se localiza en el área entre los volcanes Pasochoa, Rumiñahui y Sincholahua, y mostró un aumento en las tasas en octubre de 2021.

En la Figura 1B y 1C, vemos que las tasas de sismicidad a largo plazo están alrededor de 1 evento por día, al promediar en una ventana de 30 días. En los meses anteriores a la emisión de octubre, la tasa mostró un aumento gradual hasta llegar a alrededor de 1,5 eventos por día. Sin embargo, en el tiempo transcurrido desde que se produjo la emisión de ceniza, los índices han vuelto a descender hasta 1.

Informe Volcánico Especial Cotopaxi No. 2022-002
Figura 1: A) Mapa de sismicidad (M>1.0) cerca al volcán Cotopaxi entre el 01-dic.-2020 hasta la fecha. El tamaño y color de cada punto corresponde a la magnitud y tiempo del evento. El recuadro verde corresponde a una secuencia de réplicas de un sismo principal ocurrido el 27 de octubre de 2020 en Machachi. El recuadro negro corresponde a una secuencia de VTs distales (VTd) que ocurrió en agosto de 2022. B) Media móvil de 30 días de la sismicidad representada en la Figura 1A. La flecha verde etiquetada como "Rep." corresponde a las réplicas en la caja verde en 1A. La flecha negra denominada "VTd" corresponde al recuadro negro de 1A. La línea gris discontinua vertical es el momento aproximado de la emisión de ceniza del 21 de octubre de 2022. C). Una vista ampliada de la serie temporal desde julio de 2022 hasta la fecha. La flecha negra y la línea gris vertical son las mismas de 1B.


Deformación
Para el análisis de deformación, se realizó el procesamiento de estaciones cGPS que están ubicadas en los flancos del volcán, de inclinómetros y de imágenes satelitales procesadas con el método InSAR.

En el procesamiento InSAR de imágenes Sentinel (Figura 2) no se evidencia ningún patrón de inflación en los flancos del volcán. Se observa en color azul patrones de subsidencia mayormente en los flancos occidentales.

Informe Volcánico Especial Cotopaxi No. 2022-002
Figura 2: Imagen InSAR de la zona del volcán Cotopaxi, Satélite Sentinel-1 de órbita descendente, actualizado hasta noviembre de 2022. La barra del lado derecho muestra que las zonas azules están asociadas con “deflación” en el flanco occidental del cono. La velocidad del cambio en los flancos ha sido negativa.


En la Figura 3 se ha comparado las posiciones diarias entre las estaciones de cGPS VC1G (flanco nororiental) y MORU (flanco suroccidental). Entre los meses de agosto y noviembre, se observa un pequeño desplazamiento entre las estaciones (periodo resaltado en color rojo), el cual coincide con el aumento de la actividad superficial. El aparente desplazamiento tendría una magnitud menor a los 5 milímetros encontrándose levemente por encima de los niveles de ruido atmosférico que caracterizan a esta técnica. Sin embargo, de momento no es posible afirmar de manera enfática que la señal observada corresponda a una deformación del edificio volcánico causada por la actividad que actualmente mantiene el volcán.

Informe Volcánico Especial Cotopaxi No. 2022-002
Figura 3.- Gráfico de las posiciones relativas diarias entre dos estaciones cGPS del volcán Cotopaxi. El periodo resaltado en color amarillo corresponde a la inflación observada durante la actividad en el año 2015, mientras que el periodo resaltado en rojo corresponde a una posible anomalía y que coincide con el incremento de la actividad superficial durante las últimas semanas.


El inclinómetro del Refugio continúa presentando hasta la actualidad únicamente el patrón cíclico que responde a las variaciones anuales del clima (Figura 4).

Informe Volcánico Especial Cotopaxi No. 2022-002
Figura 4.- Serie temporal del inclínómetro instalado en las cercanías del Refugio del Volcán Cotopaxi.


Columnas de emisión de gases
Durante las últimas semanas, las columnas de emisión de gas del volcán Cotopaxi han alcanzado alturas de hasta 2 km sobre el nivel del cráter (snc). Este incremento ha sido relevante dado que desde el año 2021, la altura de las columnas tenía un valor promedio
0.2 km (200 m) snc, y eventualmente alcanzaba los 0.8 km snc (Fig. 5).

Informe Volcánico Especial Cotopaxi No. 2022-002
Figura 5. Figura de la evolución temporal de las alturas de las columnas de emisión de gas en el volcán Cotopaxi desde enero de 2022 hasta el presente. Note el incremento en las alturas de las columnas de emisión desde octubre de 2022. (Elaborado por: FJ. Vásconez).


Este cambio se ha observado desde el 17 de octubre 2022, siendo el valor máximo registrado, de 2km, el 19 de noviembre. Estas observaciones se las realizan gracias a las cámaras de vigilancia visual instaladas en los volcanes Sincholagua (al nororiente) y Rumiñahui (al noroccidente) del volcán Cotopaxi (Fig. 6). Las columnas de altura mayor a 1.8 km han sido reportadas a través de informativos IG Al Instante.

Informe Volcánico Especial Cotopaxi No. 2022-002
Figura 6. Izquierda: Fotografía e ilustración de la altura de la columna de emisión del 18 de noviembre, observada en la cámara del volcán Sincholagua, ubicada al nororiente del volcán Cotopaxi. Derecha: Fotografía e ilustración de la altura de la columna observada el 19 de noviembre a través de la cámara de vigilancia del volcán Rumiñahui, ubicada al noroccidente del volcán Cotopaxi.


Estas alturas elevadas y la persistencia de la emisión no han sido observadas desde el final del periodo eruptivo del volcán en 2015.


Desgasificación y medidas de dióxido de azufre (SO2)

Tras el episodio del 21 de octubre, el volcán Cotopaxi continúa con la emanación de gases volcánicos (por ejemplo, SO2: dióxido de azufre, CO2: dióxido de carbono H2S: ácido sulfhídrico) y vapor de agua.

La red de estaciones permanentes DOAS del IGEPN es capaz de medir los flujos de SO2. Desde fines de octubre los valores de flujo y el número de medidas válidas se han incrementado mostrando, por un lado, una mayor concentración de SO2 emitido por el volcán y además una emisión más continua en el tiempo (Fig. 7).

Informe Volcánico Especial Cotopaxi No. 2022-002
Figura 7. Superior: Masa de dióxido de azufre (SO2) observada a partir de la integral de las 4 estaciones del volcán Cotopaxi (Refugio Norte, Refugio Sur, Cami y San Joaquín) entre enero y noviembre de 2022. Inferior: Número de medidas válidas detectadas por la red DOAS entre enero y noviembre de 2022. Note el incremento en la tendencia de las medias móviles por estación a partir de mediados de octubre de 2022 (Elaborado por: J. Battaglia CNRS-LMV-UCA / M. Almeida IGEPN).


Adicionalmente, durante el mes de noviembre el sensor TROPOMI del satélite Sentinel- 5SP ha detectado estas emisiones del gas en la atmósfera, con anomalías puntuales sobre el volcán, incluso más grandes que las anomalías observadas en el volcán El Reventador que está en actividad continua desde 2002 (Fig. 8).

Informe Volcánico Especial Cotopaxi No. 2022-002
Figura 8. Masa de SO2 presente en la atmósfera sobre el volcán Cotopaxi. Los datos son obtenidos en un intervalo de tiempo de 24 horas, por ende, no constituyen un parámetro obtenido a tiempo real. Para el contexto de la presente figura se tomó en cuenta un intervalo de tiempo desde el 01 al 21 de noviembre de 2022 (Base Google Engine Code Editor, Script: C. Laverde-SGC. Elaborado por: M. Almeida).


Debido a la tendencia ascendente de la actividad superficial del volcán Cotopaxi, éste ha sido incluido en el sistema de vigilancia volcánica multiparamétrica MOUNTS (http://mounts-project.com/timeseries/352050). Esta plataforma utiliza los datos proporcionados por los satélites para realizar estimaciones cuantitativas de la masa de SO2 presente en la atmósfera. Para el caso de Cotopaxi, estos datos llegan de forma diaria y son compilados en un gráfico para analizar su evolución. En la figura 9 se puede observar la tendencia ascendente reportada por los sistemas satelitales entre octubre y noviembre de 2022.

Informe Volcánico Especial Cotopaxi No. 2022-002
Figura 9. Masa de SO2 registrada por el portal MOUNTS. (Base: Mounts, Elaborado por: FJ. Vásconez). PBL=Planetary boundary layer. Mov. Avg= media móvil.


Finalmente, durante el último sobrevuelo llevado a cabo el 20 de noviembre, se utilizó dos equipos multigas (IG-EPN y USGS-VDAP) en paralelo. El equipo multiGAS permitió medir las concentraciones de CO2, SO2 y H2S en la pluma de gas volcánico y las razones CO2/SO2 y SO2/H2S (Fig. 10). Como resultado, las razones obtenidas de SO2/H2S están alrededor de 5, mientras que las de CO2/SO2 están alrededor de 1.5. Estos valores siguen mostrando que hay un origen magmático superficial para el gas emitido por el volcán Cotopaxi. La emisión de vapor de agua y otros gases volcánicos como el CO2, SO2 y H2S, se visualiza continuamente en los últimos días indicando un incremento con respecto a lo observado en los meses pasados.

Informe Volcánico Especial Cotopaxi No. 2022-002
Figura 10. Fotografía de la columna de gas medida durante el sobrevuelo del 20 de noviembre, en el recuadro se puede observar los picos de los gases volcánicos (CO2, SO2) detectados cada vez que la aeronave atraviesa la pluma (Foto: S. Hidalgo – IG EPN).


Vigilancia Térmica
Mediante el sobrevuelo de vigilancia térmica del 20 de noviembre, se constató que los campos fumarólicos mantienen valores de temperaturas máximas aparentes (TMA) similares a los de años anteriores (post 2015) y al sobrevuelo del 27 de octubre 2022. Estos corresponden a Yanasacha, Fumarolas Flanco Este, Fumarolas Flanco Sur, Fumarolas Flanco Oeste con valores de 12, 22, 37 y 10°C respectivamente (Fig. 11). En algunos sectores se pudo observar fumarolas activas de baja intensidad. Adicionalmente, se pudo constatar que las paredes interiores inmediatas del cráter presentan campos fumarólicos continuos con valores que varían entre 10 y 22°C (Fig. 11). Por otro lado, debido a la fuerte emisión de gases no ha sido posible estimar con confiabilidad los valores de temperatura de la base del cráter en ninguno de los dos recientes sobrevuelos (Fig. 12). Respecto a la morfología, entre la emisión de gases se ha podido evidenciar una morfología regular horizontal, lo que podría representar la base del cráter, la cual ya fue observada en marzo del 2018. Las temperaturas máximas aparentes registradas para esta zona alcanzan los 98°C, sin embargo, son valores subestimados debido a la abundante presencia de gases.

Informe Volcánico Especial Cotopaxi No. 2022-002
Figura 11. Imágenes térmicas del 20 de noviembre 2022 de los campos fumarólicos del volcán Cotopaxi presentes al exterior e interior del borde del cráter.


Informe Volcánico Especial Cotopaxi No. 2022-002
Figura 12. Imágenes térmicas del cráter del volcán Cotopaxi para el 27 de octubre y 20 de noviembre del 2022, indicando entre la emisión de gases las paredes del conducto y la base del cráter.


Interpretación de datos
Luego del pequeño episodio eruptivo del 21 de octubre (VEI inferior a 1), el análisis conjunto de los diferentes datos de vigilancia muestra que la actividad actual del Cotopaxi está provocada por la presencia de magma en el conducto volcánico. Sin embargo, desde 2015 y hasta la actualidad no hay evidencia de un nuevo ingreso de magma hacia el sistema. A pesar de que los eventos de este último mes definen una tendencia ascendente para la actividad superficial del Cotopaxi, su actividad interna no muestra un cambio significativo. La sismicidad sigue estando dominada por pequeños sismos de tipo LP y por ahora no hay deformación detectable en los flancos del volcán. Los gases medidos indican la desgasificación de un magma superficial que no ha recibido un aporte de magma nuevo rico en gases. En este sentido es importante mantener la vigilancia de todos estos parámetros con el fin de identificar oportunamente el acenso de nuevo magma que podría generar una mayor actividad superficial, incluyendo explosiones y emisiones de ceniza.


Escenarios eruptivos

En base a los parámetros de vigilancia volcánica se propone dos escenarios principales, en orden de probabilidad:

  1. La emisión de ceniza del 21 de octubre de 2022 correspondería a un evento aislado, similar a otros menores durante estos últimos 7 años, por ejemplo, el del 27/11/2021. Este tipo de eventos puede repetirse en el corto y mediano plazo (días a semanas), sin mostrar signos precursores. En este escenario no se esperaría actividad superficial mayor a corto plazo.
  2. La emisión de ceniza del 21 de octubre de 2022 correspondería al inicio de un periodo eruptivo, relativamente equivalente a la actividad del 14/08/2015, aunque al momento no existen evidencias que sugieran esta evolución. Además, la incertidumbre es demasiado alta para estimar el tamaño de este posible periodo eruptivo, así como la velocidad de los cambios que el volcán podría experimentar. Es importante destacar que la presencia del magma en el conducto y la desgasificación indican un sistema abierto. Bajo estas condiciones los signos premonitores de eventos eruptivos son muy sutiles e incluso inexistentes, limitando la anticipación o pronóstico de eventos mayores.

Estos escenarios podrán ser cambiados de acuerdo a la evolución de los parámetros que se vigila en el volcán.

El IG-EPN se mantiene pendiente de lo que pasa en el volcán, basado en la experiencia de las erupciones pasadas (Pichincha, Tungurahua, Cotopaxi) y presentes (Reventador, Sangay).


Agradecimientos

El Instituto Geofísico de la Escuela Politécnica Nacional agradece a todas las instituciones que colaboraron para la realización de este sobrevuelo: Presidencia de la República del Ecuador, Ministerio de Defensa, Servicio Nacional de Gestión de Riesgos y Emergencias, Fuerza Aérea Ecuatoriana, Gobernación de Cotopaxi. Y la cooperación permanente del USGS (Servicio Geológico de Estados Unidos), Programa de Asistencia para Desastres Volcánicos (VDAP), el Centre National de la Recherche Scientifique (CNRS), la Universidad Clermont-Auvergne (UCA), el Laboratorio Magmas y Volcanes (LMV) y el Instituto de Investigación para el Desarrollo (IRD).

 

Elaborado por: M. Almeida Vaca, S. Hidalgo, FJ. Vásconez, S. Vallejo Vargas, S. Hernández, M. Yepez, D. Andrade.
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes