Noticias

Noticias

Subcategorías

Sismos

Sismos

Uno de sus objetivos fundamentales es el monitoreo sísmico permanente de la actividad de origen tectónico y volcánico del territorio nacional.

Ver artículos...
Volcanes

Volcanes

Los volcanes activos son observados a través de diversas tecnologías.

Ver artículos...
Instrumentos

Instrumentos

La tecnología comprende un conjunto de teorías y técnicas que permiten el aprovechamiento práctico del conocimiento científico. No es de sorprenderse que a diario aparezcan nuevas técnicas y revolucionarias teorías que permitan que la tecnología avance a pasos agigantados, facilitando procesos y resolviendo problemas dentro de diversas áreas del quehacer de la comunidad en general.


Desde su creación, el IG ha visto la necesidad de utilizar instrumentos que le permitan realizar una precisa vigilancia tanto en sísmica como en varios otros parámetros relacionados al vulcanismo.

Ver artículos...

En el Ecuador existen centenares de vertientes o fuentes de agua, tanto  termales como frías, ubicadas a lo largo y ancho del país. Un grupo representativo (54 fuentes) de fuentes termales del país fue estudiado y actualizado en cuanto a sus parámetros físicos y químicos en el año 2009 (Inguaggiato et al., 2010). La distribución de las vertientes estudiadas se muestra en la Figura 1.

Fuentes Termales en el Ecuador Figura 1.- Distribución de las vertientes de agua en el Ecuador estudiadas por Inguaggiato et al. (2010). E1 a E57 corresponden a los números de muestras.

Estas fuentes están generalmente asociadas a sistemas de fallas tectónicas y/o a sistemas volcánicos. Las temperaturas de las aguas presentan un amplio rango, entre 15 y 74.5ºC con un pH entre 4.6 y 9.2 (Figuras 2 y 3). La conductividad eléctrica varía entre 51 y 20000 uS/cm. Existen fuentes con conductividades mayores, que pueden estar relacionadas a procesos de evaporación en superficie (hasta 68200 μS/cm en Salinas de Bolívar). La conductividad eléctrica de estas aguas es elevada con respecto a la medida en aguas superficiales (< 200 μS/cm en ríos), indicando la presencia de distintos elementos en solución. Los iones dominantes en el agua son: Sodio, Potasio, Magnesio, Calcio, Fluoruro, Cloruro, Bromuro, Sulfato, Bicarbonato y Sílice. Además de estos iones dominantes existen otros elementos en solución en concentraciones más bajas, conocidos como elementos en trazas, y que se expresan en partes por millón (ppm) o partes por billón (ppb). Los elementos en trazas analizados generalmente son: Li, Be, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Cd, Sb, Cs, Ba, Hg, Pb, Th, U, B. Casi todos estos elementos pueden ser tóxicos si superan la concentración permitida para el consumo humano (p.e. arsénico 5 ppb, mercurio 1 ppb, boro 0,5 ppm) y su ingestión contínua puede producir envenenamiento tanto para el ser humano como para las plantas y animales que los consuman. Es por esto que no se debe consumir aguas de vertientes sin conocer con precisión su composición química.

Fuentes Termales en el Ecuador Figura 2.- pH vs. Conductividad de las vertientes estudiadas. Nótese que las medidas en aguas superficiales (ríos) muestran baja conductividades con un pH variable. La mayoría de las aguas termales tienen un pH entre 5.5 y 7.

Fuentes Termales en el Ecuador Figura 3.- pH vs. Temperatura de las aguas estudiadas. Nótese que las aguas superficiales tienen temperaturas menores a 10ºC, mientras que las aguas de vertiente generalmente están sobre los 15ºC.

Algunas de estas vertientes presentan además un alto contenido de gases. El gas puede estar disuelto en el agua (p.e. el agua de Güitig), pero también puede  presentarse como gas libre o conocido como burbujeante. Estas burbujas de gas dan la impresión de que el agua está “hirviendo”, pese a que su temperatura es inferior a la temperatura de ebullición (esta última disminuye con la altura: el agua hierve a menor temperatura en Quito que en Guayaquil). Estas burbujas evidencian la presencia de gas en la vertiente (Figura 4). Esta fase gaseosa está principalmente compuesta por CO2 (anhídrido carbónico o dióxido de carbono), aunque también pueden estar presentes otras especies gaseosas como: CH4 (metano), H2S (ácido sulfhídrico), CO (monóxido de carbono), O2 (oxígeno) N2 (nitrógeno), He (helio), Ar (argón) y H2O (vapor de agua).

De estos gases el CO2, el H2S y el CO son altamente peligrosos para el hombre y los animales cuando están presentes en concentraciones elevadas. En los estudios realizados en las vertientes del país, el CO2 constituye generalmente más del 80% del gas burbujeante. El dióxido de carbono (CO2) es un gas incoloro, inodoro y tóxico en altas concentraciones, así como también asfixiante (impide respirar !!, es decir: huir o morir) también produce irritación en los ojos, nariz y garganta. El CO2 es más denso que el aire (desplaza al oxígeno) y se concentra en zonas bajas de hondonadas y/o de espacios cerrados; es así que no se debe ingresar a vertientes burbujeantes captadas en espacios cerrados (tanques de captación artificiales o huecos naturales) donde el CO2 puede estar concentrado sobre el nivel de salida del agua termal: ese espacio se convierte entonces en una trampa mortal (si Ud. no huye a tiempo).

Fuentes Termales en el Ecuador Figura 4 a.- fuente de Oyacachi, captación cerrada. No se permite el ingreso al público. b.- Potrerillos en Carchi - bicarbonatada-ferruginosa, peligrosa por su alto contenido de CO2. c.- Captación en Nono, cerrada al público. d.- Pululahua, captación rica en CO2. Este tipo de captaciones deben estar a decenas hasta cientos de metros de las piscinas abiertas al público.

Lamentablemente en el país se han registrado varios casos de fallecimiento de personas por asfixia a causa del ingreso directo a las vertientes termales con gases burbujeantes (principalmente CO2). Es así que el 21 de enero de 2015, 6 personas fallecieron en la fuente de Tangalí, cercana a la ciudad de Otavalo. Así mismo, en Pitzanzi (Imbabura) y Palitahua (Tungurahua) han fallecido en años anteriores 2 personas al ingresar a los tanques de captación construidos alrededor de las fuentes donde se concentran los gases. También ocurrió el fallecimiento de una persona en Aguas Hediondas (Carchi), al tomar baños directamente en la vertiente con gas burbujeante rico en H2S (este gas se lo reconoce porque huele a huevos podridos cuando se presenta en concentraciones bajas y es "inodoro" y letal a concentraciones altas).

Los balnearios y piscinas, donde se aprovecha este recurso geotérmico de las aguas termales, no constituyen en sí un riesgo para el ser humano, siempre y cuando las piscinas estén construidas a una distancia prudente de las captaciones de las vertientes y estén en un lugar abierto y ventilado. Bajo ningún concepto se debe construir “saunas” o “cajones” donde se aproveche el gas que sale directamente de las vertientes, estos son potenciales trampas mortales  de CO2 u otro gas tóxico.

Recomendaciones :

  • No ingerir aguas de vertientes cuya composición química precisa se desconoce.
  • No ingresar en vertientes directamente, especialmente si se observa burbujeo de gases y si la fuente está en una hondonada.
  • No ingresar en tanques de captación construidos sobre/alrededor de vertientes/fuentes termales.
  • No construir “saunas” sobre el sitio de salida/ojo de agua de las vertientes/fuentes termales.

Más detalles sobre las diferentes especies gaseosas se pueden encontrar en http://www.ivhhn.org/uploads/es/gases_espanol.pdf, o en http://www.ivhhn.org/images/pdf/gas_guidelines.pdf

El estudio de Inguaggiato et al. (2010) puede ser solicitado directamente en el Instituto Geofísico de la Escuela Politécnica Nacional.

Instituto Geofísico
Escuela Politécnica Nacional

Como parte de la vigilancia volcánica que el Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) lleva a cabo en los principales volcanes del Ecuador, un grupo de técnicos del Instituto realizó una campaña de medición y muestreo en fuentes termales asociadas al volcán Quilotoa del 15 al 16 de febrero del 2024, este tipo de muestreos se vienen realizando en Quilotoa desde fines del año 2022.

Vigilancia de fuentes termales en el volcán Quilotoa
Figura 1.- Lago cratérico del volcán Quilotoa, 16/02/2024 (Foto: D. Sierra/ IG-EPN).


El volcán Quilotoa, con 3914 msnm, es un volcán con lago cratérico perteneciente a la Cordillera Occidental, es considerado como “Potencialmente Activo” y se ubica al Oeste de la ciudad de Latacunga. Su última erupción tuvo lugar hace aproximadamente 800 años (siglo XII), produciéndose grandes flujos piroclásticos y un depósito de caída de ceniza que se encuentra distribuido a lo largo del Norte del país.

Vigilancia de fuentes termales en el volcán Quilotoa
Figura 2.- Medición de parámetros físico-químicos en el sector de Casa Quemada 16/02/2024 (Foto: D. Sierra/ IG-EPN).


Durante la campaña se midieron los parámetros físico-químicos en cinco fuentes termales y un drenaje superficial en los alrededores del volcán Quilotoa. Adicionalmente se tomaron muestras de agua que serán analizadas en el Centro de Investigación y Control Ambiental (CICAM) de la EPN y en el Laboratorio Privado Gruentec.

Vigilancia de fuentes termales en el volcán Quilotoa
Figura 3.- (Izq.) Medición de parámetros físico-químicos en la fuente termal de Padre Rumi (Foto: J. Salgado/IG-EPN). (Der.) Medición de parámetros físico-químicos en la fuente termal de Cashapara (Foto: D. Sierra/ IG-EPN).


Estas tareas forman parte de las actividades de monitoreo rutinario que realiza el IG-EPN en las zonas de influencia volcánica, para mejorar el entendimiento de la dinámica de los centros volcánicos de nuestro país.

¿Quieres aprender más sobre los fluidos volcánicos? Visita el siguiente link: https://www.igepn.edu.ec/publicaciones-para-la-comunidad/comunidad-espanol/tripticos/21957-triptico-aguas-termales-y-gas-2019

D. Sierra, J. Salgado
Instituto Geofísico
Escuela Politécnica Nacional

Como parte de la vigilancia volcánica que el Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) lleva a cabo en los principales volcanes del Ecuador, un grupo de técnicos del Área de Vulcanología realizó una campaña de vigilancia de la actividad superficial de las principales fuentes termales y campos fumarólicos del Complejo Volcánico Chiles-Cerro Negro (CV-CCN) entre el 31 de julio y el 04 de agosto de 2023.

Desde marzo del año en curso, el CV-CCN ha presentado un nuevo incremento en la actividad sísmica, caracterizada principalmente por la ocurrencia de eventos de tipo volcano-tectónico (VT: asociados a la ruptura de rocas al interior del volcán), localizados principalmente bajo la zona de Lagunas Verdes, a profundidades de 2 y 6 km bajo la cumbre. Así mismo, este incremento viene acompañado por una señal de deformación que se centra también bajo la misma zona.

Por consiguiente, con la finalidad de verificar la existencia de posibles cambios morfológicos y en la actividad superficial de las fuentes termales y fumarolas del CV-CCN, los técnicos del IG-EPN visitaron las fuentes termales de: Aguas Negras, Aguas Hediondas, Artezón, El Hondón, Potrerillos, Monte Lodo, Lagunas Verdes, La Ecuatoriana, La Virgen y Tablones. En estas se realizó la medición de parámetros físicoquimicos y la toma de muestras de las aguas para su análisis geoquímico, los cuales se llevarán a cabo en los laboratorios del Centro de Investigación y Control Ambiental de la EPN (CICAM). Además, se utilizó el equipo MultiGAS en las zonas que tienen manifestaciones gaseosas superficiales como por ejemplo: Aguas Negras, Aguas Hediondas y Lagunas Verdes (Figura 1).

Vigilancia de la Actividad Superficial del Complejo Volcánico Chiles - Cerro Negro (CV-CCN), Prov.- Carchi
Figura 1. Izquierda: Mediciones MultiGAS (Análisis de gas multicomponente) en la zona de Aguas Hediondas. Derecha: Medición de parámetros fisicoquímicos en la fuente termal de Aguas Negras (Foto: D. Sierra - IGEPN).


En mayo de 2023, montañistas de la zona reportaron el aparecimiento de nuevas grietas en la zona occidental de la cumbre del volcán Chiles. Los técnicos de IG-EPN se dirigieron a la zona para hacer una constatación en campo de dichas grietas. Una vez identificada la zona, se realizaron medidas estructurales (dimensión, profundidad, apertura, rumbo e inclinación), cuyos resultados denotan grietas de longitud variable, entre 10 y 50 metros, cuya apertura puede alcanzar un metro y profundidades de entre 5 a 10 metros (Figura 2 izquierda). Gracias a la ayuda de una cámara térmica se pudo constatar que estas grietas no están calientes (Figura 2 derecha). Así mismo, el equipo multigas evidenció que NO salen gases volcánicos a través de estas grietas. Otras grietas de igual tamaño pudieron ser observadas en zonas aledañas, sin embargo, estas se encuentran cubiertas y rellenas por depósitos detríticos, indicando que este es un proceso recurrente en la parte alta del volcán debido a los procesos erosivos típicos de esas zonas climáticas y de esas alturas.

Vigilancia de la Actividad Superficial del Complejo Volcánico Chiles - Cerro Negro (CV-CCN), Prov.- Carchi
Figura 2. Izquierda: Una de las grietas observadas en la zona alta del del volcán Chiles. Derecha: Imagen térmica, nótese en el recuadro la zona de la imagen, así como la escala de temperaturas (Foto e imagen: M. Almeida - IGEPN).


Algunas conclusiones breves asociadas a esta visita se resumen en:

  • Se identificaron ligeros cambios en los parámetros fisicoquímicos de las fuentes termales, situación que ya se ha observado en visitas anteriores y que no está fuera de los niveles de base.
  • Las grietas observadas pueden estar relacionadas a procesos erosivos y de fracturamiento propios del volcán, intensificados por la deformación y sismicidad detectada los últimos meses. Sin embargo, grietas más antiguas se observaron, indicando que no es un proceso aislado en el edificio volcánico.
  • La desgasificación del volcán se mantiene dentro de los niveles de base.


Recomendaciones:
El Instituto Geofísico de la Escuela Politécnica Nacional recomienda no acercarse a las zonas de emisión de gases (fumarola de Lagunas Verdes, fumarola de Aguas Hediondas), y a las fuentes termales de alta temperatura (El Hondón). Así mismo, se recomienda no visitar prolongadamente las zonas escarpadas del volcán, pues existe un alto riesgo de caídas de rocas y de deslizamientos.


Autores: D. Sierra, M. Almeida, E. Telenchana.
Corrector de Estilo: GP
Instituto Geofísico
Escuela Politécnica Nacional

Viernes, 25 Noviembre 2022 10:01

Vigilancia volcánica con drones en el Cotopaxi

Gracias a las autorizaciones del Ministerio de Ambiente, Agua y Transición Ecológica (MAATE) y de la Dirección General de Aviación Civil (DGAC), y al apoyo del Parque Nacional Cotopaxi, personal del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) realizó vigilancia volcánica con drones (Fig. 1) en el Cotopaxi en los días 08, 18, 22 y 24 de noviembre de 2022.

Vigilancia volcánica con drones en el Cotopaxi
Figura 1.- Cráter del volcán Cotopaxi con emisión de gases, 18 de noviembre de 2022 (foto: B. Bernard – IGEPN).


En estas ocasiones se utilizaron dos drones (DJI Mavic 3 y DJI Matrice 210 con cámara dual Zenmuse XT2) para la toma de fotos y videos en rango visual e infrarrojo (Fig. 2). Las condiciones meteorológicas del 08 de noviembre, en particular los fuertes vientos y la abundante nubosidad, limitaron el número de vuelos y de imágenes adquiridas. Las condiciones meteorológicas más favorables de los días 18, 22 y 24 de noviembre permitieron realizar más vuelos y adquirir más imágenes visuales y térmicas. Los drones despegaron desde el parqueadero de refugio José Ribas y alcanzaron el cráter del volcán Cotopaxi.

Vigilancia volcánica con drones en el Cotopaxi
Figura 2.- Drone DJI Matrice 210 con cámara Zenmuse XT2 para la toma de imágenes visuales e infrarrojas (foto: A. Vásconez – IGEPN).


Entre el vuelo del 08 de noviembre y los vuelos del 18 y 22 de noviembre se notó una mayor presencia de nieve en el volcán, la cual cubrió el depósito de ceniza asociado al pulso de actividad del 21 de octubre 2022 (Informe Volcánico Especial – Cotopaxi – 2022 – N°001). También se observó una mayor emisión de gases en los días 18 y 22 de noviembre comparado con el 08 de noviembre (Fig. 3).

Vigilancia volcánica con drones en el Cotopaxi
Figura 3.- Cumbre del volcán Cotopaxi con ceniza (08/11/2022) y nieve (22/11/2022) (fotos: B. Bernard – IGEPN).


El 24 de noviembre se pudo comprobar la presencia de ceniza en los flancos oriental y nororiental del Cotopaxi, la cual está asociada a los pulsos de tremor de emisión ocurridos en la tarde del 23 de noviembre (IGalinstante Volcán Cotopaxi – 2022 – N°008). Adicionalmente el 24 de noviembre se logró realizar una ortofotografía y un modelo digital de terreno de la zona de la cumbre para futuras referencias (Video).


Entre el 18 y el 22 de noviembre no se detectaron cambios significativos en la temperatura de la zona de Yanasacha, la cual mantiene una temperatura máxima aparente entre 10 y 20 °C (Fig. 4). El 24 de noviembre se constataron temperaturas normales en los diferentes campos fumarólicos (oriental, occidental, cráter).

Vigilancia volcánica con drones en el Cotopaxi
Figura 4.- Temperaturas máximas aparentes medidas en la zona de Yanasacha (imágenes: B. Bernard – IGEPN).


AGRADECIMIENTO: El Instituto Geofísico de la Escuela Politécnica Nacional extiende un profundo agradecimiento al Ministerio del Ambiente, Agua y Transición Ecológica y a la Dirección General de Aviación Civil para autorizar el vuelo de drones en la zona del volcán Cotopaxi. Adicionalmente, agradecemos al Parque Nacional Cotopaxi y a sus guardaparques que apoyaron al personal del IG-EPN para realizar esta tarea.


B. Bernard, A. Vásconez, M. Córdova, E. Telenchana
Instituto Geofísico
Escuela Politécnica Nacional

Entre el 25 y 27 de octubre de 2023, técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) realizaron actividades de vigilancia volcánica y adquisición de datos geomorfológicos en el volcán El Reventador, ubicado en el límite entre las provincias de Napo y Sucumbíos.

Trabajo de campo
El Reventador es uno de los volcanes más activos del país. Desde 2002, su actividad eruptiva está catalogada de moderada a alta, caracterizada por flujos de lava, explosiones y emisiones de ceniza.

Durante la visita de campo, las cámaras visuales y térmicas permitieron a los técnicos del IG-EPN registrar detalladamente la actividad del volcán (Figura 1). Utilizando aeronaves pilotadas a distancia (RPAs), se pudo observar que actualmente no hay flujos de lava activos en el volcán y que se están emitiendo nubes de ceniza desde dos cráteres, uno al sureste y otro al noroeste (Figura 2). Los datos obtenidos con los RPAs serán utilizados para estudios geomorfológicos del volcán.

Vigilancia volcánica y estudio geomorfológico en el volcán El Reventador
Figura 1. Vigilancia del volcán El Reventador con cámaras fijas (izquierda) y RPAs (derecha) (Fotos: A. Vásconez/IG-EPN).
Vigilancia volcánica y estudio geomorfológico en el volcán El Reventador
Figura 2. Ortofoto (izquierda) y modelo digital de elevación (derecha) del volcán El Reventador reconstruida en base a varias imágenes tomadas con un RPA (Figuras: B. Bernard/IG-EPN).


Además, se ha observado que las erupciones son menos energéticas que en años anteriores. La baja carga de ceniza en las emisiones también fue confirmada por caídas de ceniza muy leves a leves los días 26 y 27 de octubre a 3,6 km al este-sureste del cráter (Figura 3). Para realizar un seguimiento continuo de la caída de ceniza, los técnicos del IG-EPN instalaron dos cenizómetros a 3,6 y 7,4 kilómetros al este-sureste del cráter del Reventador, en el cantón de Chaco, provincia de Napo (Figura 3).

Vigilancia volcánica y estudio geomorfológico en el volcán El Reventador
Figura 3. Izquierda: Caída de ceniza leve sobre un panel solar el día 27/10/2023. Centro y Derecha: Instalación de dos cenizómetros al este-sureste del cráter del Reventador (Fotos: A. Vásconez/IG-EPN).


Los cenizómetros son contenedores especialmente diseñados para recoger muestras de ceniza no contaminadas. Las muestras obtenidas permiten controlar periódicamente la dispersión y el volumen de cenizas emitidas por los volcanes. Posteriormente las muestras se analizan en el laboratorio para determinar su tamaño y su composición, y evaluar su peligrosidad. Esta información sirve para complementar la vigilancia instrumental del volcán.

Se extiende un agradecimiento al Ministerio del Ambiente, Agua y Transición Ecológica (MAATE), y a la Dirección General de Aviación Civil (DGAC) por los permisos correspondientes para realizar estas actividades.

Anais Vásconez, Benjamin Bernard
Instituto Geofísico
Escuela Politécnica Nacional