Noticias

Noticias

Subcategorías

Sismos

Sismos

Uno de sus objetivos fundamentales es el monitoreo sísmico permanente de la actividad de origen tectónico y volcánico del territorio nacional.

Ver artículos...
Volcanes

Volcanes

Los volcanes activos son observados a través de diversas tecnologías.

Ver artículos...
Instrumentos

Instrumentos

La tecnología comprende un conjunto de teorías y técnicas que permiten el aprovechamiento práctico del conocimiento científico. No es de sorprenderse que a diario aparezcan nuevas técnicas y revolucionarias teorías que permitan que la tecnología avance a pasos agigantados, facilitando procesos y resolviendo problemas dentro de diversas áreas del quehacer de la comunidad en general.


Desde su creación, el IG ha visto la necesidad de utilizar instrumentos que le permitan realizar una precisa vigilancia tanto en sísmica como en varios otros parámetros relacionados al vulcanismo.

Ver artículos...

30 de octubre de 2011

 

No sólo las fuerzas de la naturaleza podrían ser las causantes de  los terremotos en nuestro planeta. Hace más de 50 años que megaproyectos de ingeniería humana estarían causando movimientos telúricos, según el profesor e investigador Leonardo Seeber, del Observatorio Terrestre Lamont-Doherty, en Nueva York.

En un artículo publicado por The New York Times, el investigador apunta como ejemplo un terremoto “terrible” ocurrido en 1967 en la India, y que se asoció con la construcción de la presa Koyna.

"Sin duda éste y muchos otros terremotos fueron provocados por la acción humana", dijo Seeber. Sin embargo, es difícil distinguirlos de los desastres de causa natural porque –dice el investigador- “los representantes de las empresas por lo general se niegan a admitir la responsabilidad y hacen difícil obtener datos que confirmen esta influencia'', dijo.

Según sus investigaciones, un pequeño aumento de la presión en un terreno donde se construye una obra de ingeniería puede conducir a la ruptura de una  falla geológica.

Seeber sostiene que las intervenciones humanas que causan estos desastres pueden ser de dos tipos: las que cambian la presión en la corteza, como -por ejemplo- la construcción de lagos artificiales, que aumentan la presión, y la explotación de canteras y yacimientos de petróleo, que la disminuyen.

Seeber dice que es poco probable que los procesos hidráulicos humanos –que utilizan un gran volumen de agua, arena y productos químicos-  causen terremotos en sí, pero la liberación de los líquidos involucrados, probablemente puede terminar en eso.

LA PRESA KOYNA

En el sismo de la presa Koyna, que ocurrió en 1967, más de 120 personas murieron y muchas más resultaron lesionadas cuando un terremoto de magnitud 6.5 Richter se produjo en el área de la recién construida presa. Se cree que el inmenso peso del agua cambió la presión sobre el suelo.

Se piensa que el sismo de magnitud 5 Richter que sacudió en mayo de 2001 el Mar del Norte entre el Reino Unido y Noruega fue causado por una liberación de presión debida a la extracción de petróleo y gas.

 En 1967, montañas de desechos que se habían inyectado en las Montañas Rocallosas activaron un terremoto de magnitud 5.5 debajo de Denver, Colorado.

Fuente:

http://noticias.terra.com.pe/internacional/acciones-humanas-causan-terremotos-conozca-las-teorias,4e4b53a98d553310VgnVCM20000099f154d0RCRD.html

 

Introducción
A inicios del mes de julio de 2023 el IG-EPN puso a disposición del público una Biblioteca Digital que contiene en formato póster todos los Mapas de Amenaza que ha generado a lo largo de sus más de 40 años de trayectoria. Para saber más sobre la biblioteca de mapas del IG-EPN, sigue el siguiente enlace: https://www.igepn.edu.ec/interactuamos-con-usted/2080-la-biblioteca-de-mapas-de-amenaza-del-ig-epn

En los primeros 3 meses, se registraron más de 7 mil descargas de las más de dos docenas de mapas disponibles, siendo los Mapas de Amenazas del Cotopaxi en sus 4 ediciones los que más interés despiertan en el público, debido a su reciente actividad y su alta peligrosidad.

A pesar del esfuerzo realizado durante las últimas 4 décadas, somos conscientes que los mapas de peligros volcánicos pueden resultar complejos de entender y utilizar, tanto para el público en general como para usuarios técnicos especializados. Los mapas elaborados por el IG-EPN desde 1986 pueden tener diferencias entre si, pero su estructura básica es bastante similar y la forma en que deben ser leídos e interpretados conserva una misma lógica. A continuación, te dejamos las directrices básicas para entender los Mapas de Amenazas que componen la Biblioteca Digital del IG-EPN.

El primer paso es entender que los mapas son elaborados en base a uno o varios escenarios eruptivos específicos de cada volcán. Un escenario representa una situación hipotética que describe los fenómenos y efectos de una erupción para un volcán determinado. Cuando es posible, los escenarios se construyen en base a hechos históricos, los cuales son complementados con información geológica y geofísica del volcán obtenida mediante estudios científicos. Su objetivo es definir el tamaño y recurrencia de los fenómenos que serán representados en el mapa, pero la definición de un escenario también ayuda en las tareas de prevención y la planificación de la respuesta ante la ocurrencia de una erupción.

Los escenarios presentes en un mapa tienen diferentes probabilidades de ocurrencia, por lo que es muy importante leer los textos del mapa, pues nos orienta sobre los escenarios representados.

¿Cómo entender adecuadamente nuestros Mapas de Peligro Volcánico?
Figura 1.- Ejemplo del Mapa de Amenazas del Volcán Pululahua de 1988, resaltando la importancia de leer el texto explicativo y la leyenda.


Como se había mencionado, todos los mapas tienen más o menos la misma forma de representar la zonificación de los diferentes fenómenos volcánicos y para ello se utilizan polígonos de diferentes colores. A continuación, se describen las zonas de peligro más comunes representadas en los mapas.


Afectación por Multi-Amenazas Proximales

Las zonas proximales de los volcanes (menos de 10 km alrededor del cráter) son susceptibles a ser afectadas por diversos fenómenos volcánicos, que pueden ocurrir de manera simultánea durante una erupción. Dichos fenómenos suelen ser letales por lo que se los incluye en una sola zona que incluye:

  1. Los proyectiles balísticos. - Fragmentos de roca/lava expulsados violentamente durante una erupción volcánica que pueden ser de hasta tamaños métricos y siguen una trayectoria similar a la de una bala de cañón, es decir una parábola.
  2. Los flujos piroclásticos.- Avalanchas calientes (300-800°C) de gases, ceniza y roca, que descienden por los flancos del volcán, desplazándose a grandes velocidades (75-150 km/h).
  3. Lahares.- Mezclas de agua y material rocoso de origen volcánico, son llamados también flujos de lodo y escombros y se mueven ladera abajo por la fuerza de la gravedad a grandes velocidades.
  4. Flujos de lava.- Roca fundida que alcanza la superficie a altas temperaturas (800-1200°C) y se desplaza por los flancos del volcán a bajas velocidades.

La zona Multi-Amenazas rodea el cráter o centro de emisión. Normalmente, sus límites se definen mediante estudios geológicos o mediante el uso del método del cono de energía. Este método asume que los productos volcánicos se distribuyen de forma cónica desde un punto ubicado encima del cráter y su alcance depende de las pendientes del volcán y de la altura del punto. Los peligros generalmente tienen una distribución radial, siendo siempre más peligroso cuanto más cerca estemos del centro de emisión, sin embargo, la topografía juega un papel crucial en la definición de las zonas de afectación.

Las Zonas de Amenazas Proximales (Multi-Amenazas) están marcadas con tonos de rojo o rosado en los mapas de peligro. Por lo general, los tonos más oscuros corresponden a zonas de mayor amenaza, es decir de escenarios con mayores probabilidades de ocurrencia. Por otro lado, los colores más tenues representan zonas donde la amenaza es menor y/o el escenario es menos probable de ocurrir.

Es importante leer la leyenda del mapa para saber qué representan los colores en cada uno de los casos. Usualmente, los mapas elaborados por el IG-EPN tienen dos o tres gradaciones de color para representar la zona de Multi-Amenazas (Figura 2).

Hay que mencionar que la mayoría de los fenómenos antes descritos se restringen necesariamente a las proximidades de los cráteres, por lo que la posibilidad de ser afectado por un bloque balístico o un flujo de lava por fuera de las zonas de colores rojizos es muy baja o prácticamente nula. Es muy importante también recordar que los escenarios son específicos de cada volcán, por lo que las zonas de peligros proximales no necesariamente representan las mismas probabilidades en todos los mapas.

¿Cómo entender adecuadamente nuestros Mapas de Peligro Volcánico?
Figura 2.- Ejemplo para interpretar los polígonos de afección por Multi-Amenazas, para el Volcán Tungurahua en un escenario VEI= 2-La Peligrosidad: Alta, Media y Baja se ha representado con colores gradados desde el rojo al rosa.


Zonas de Afectación por Lahares

Los lahares secundarios son de tamaños relativamente pequeños y su afectación se restringe a las proximidades del volcán, por lo cual sus efectos están considerados dentro de la zona de multi-amenazas.

Por otra parte, los lahares primarios son aquellos que se forman simultáneamente a una erupción, lo que puede ocurrir debido al derretimiento de los glaciares o la presencia de grandes cuerpos de agua que son afectados directamente por la erupción. Pueden alcanzar volúmenes muy grandes y tener alcances de hasta varias decenas de kilómetros, que son representados de forma separada y específica en los mapas de peligro.

Los polígonos de afectación por lahares han sido representados mayormente con tonos de gris (aunque excepcionalmente se han representado con otros colores). Se ha evitado siempre el uso del color rojo para que el usuario no los confunda con flujos de lava. También se han evitado los colores de la gama del azul para evitar su confusión con flujos de agua, o con el “cauce normal” de los ríos y quebradas que utilizan para movilizarse (Figura 3 y 4).

¿Cómo entender adecuadamente nuestros Mapas de Peligro Volcánico?
Figura 3.- A) Ejemplo práctico para visualizar los polígonos de afectación por lahares primarios en un escenario tipo 1877 del Cotopaxi. En la zona proximal se puede ver como los polígonos grises se sobreponen a los correspondientes a la zona de multiamenazas (colores rosado/rojo). B) Las zonas de peligro por lahares primarios pueden alcanzar varias decenas o centenas de kilómetros. En el caso del volcán Cotopaxi, los mapas incluyen zonas muy lejanas como el Valle de los Chillos al Norte, Latacunga y Salcedo al Sur y la ribera del napo-Jatunyaku al Oriente. Debido a que las zonas de afectación por lahares del Cotopaxi son muy extensas, los mapas en formato papel o documento PDF han sido divididos en 3 partes (una para cada drenaje). Todos estos mapas pueden ser descargados del sitio web del IG-EPN: https://www.igepn.edu.ec/mapas-historicos/cotopaxi-2/mapa-amenaza-cotopaxi-vigente-2016.



Zonas de Afectación por Caída de Ceniza (Piroclastos)

La ceniza es material rocoso fino, con diámetro menor a 2 milímetros, que es expulsado por los volcanes durante las erupciones explosivas. Por su pequeño tamaño es susceptible a ser transportada por el viento y afectar extensas zonas, a veces a grandes distancias del volcán, en función de la velocidad y dirección del viento.

La definición de las zonas de mayor probabilidad de caída de ceniza se ha hecho a través de modelos computarizados y a través del reconocimiento de depósitos correspondientes a erupciones pasadas. Estos estudios han permitido definir las zonas de mayor probabilidad de afección por caída de ceniza para determinados escenarios de cada volcán, mismos que han sido expresados en cada uno de los mapas de amenaza.

Los mapas nos muestran áreas de forma elíptica, cuyo borde está definido por líneas entrecortadas. Cada una de estas líneas corresponde a una isópaca (línea de igual espesor). Es decir, una isópaca nos sugiere el espesor de ceniza (expresada normalmente en milímetros o centímetros) que puede caer dentro una elipse.

La Figura 4 nos muestra que la cantidad de ceniza depositada va disminuyendo en dirección del viento a medida que nos alejamos de la fuente (cráter).

¿Cómo entender adecuadamente nuestros Mapas de Peligro Volcánico?
Figura 4.- Ilustración de las líneas isópacas de caída de ceniza, que son utilizadas para el mapa del Volcán Guagua Pichincha (2016) mostrando la disminución exponencial en el espesor de los depósitos a medida que nos alejamos de la fuente.


Las elipses que representan la zona de caída de ceniza empiezan en el cono volcánico y se abren en dirección del viento. En el caso del Ecuador, estas elipses están casi siempre orientadas hacia el occidente. Esto se debe a que los vientos que soplan sobre el territorio continental ecuatoriano lo hacen en un 70-80 % del tiempo de este a oeste, es decir, desde el Oriente hacia la Costa. Sin embargo, en algunas ocasiones y en especial entre noviembre y marzo, la dirección del viento es bastante variable.

La Figura 5A muestra las zonas de afectación de ceniza, si una erupción llegara a ocurrir durante un día en el cual el viento estuviera dirigiéndose hacia el occidente (el caso más común). La Figura 5B muestra cómo sería la dispersión de ceniza si una erupción ocurriera en un día en que el viento estuviera alineado en otra dirección (caso menos común), por ejemplo, hacia el norte, y la Figura 5C compila varias posibilidades con diferentes direcciones del viento (norte, sur, este y oeste). En base a estas infinitas posibilidades, los mapas incluyen también un círculo que engloba a todas las elipses y que indica las zonas que pueden ser afectadas por una caída de ceniza en caso de que el viento cambie su dirección habitual.

La Figura 5D nos permite entender cómo la isópaca orientada en dirección preferencial del viento es la zona más susceptible a la caída de ceniza. Sin embargo, el círculo grande muestra todas las zonas que pudieran ser afectadas por caída de ceniza en caso de que el viento cambie su dirección y apunte en cualquier otra dirección.

¿Cómo entender adecuadamente nuestros Mapas de Peligro Volcánico?
Figura 5.- Ejemplificación de la construcción de zonas de caída de ceniza para un escenario eruptivo VEI 3-4 tipo 1877 del Cotopaxi.


Avalancha de Escombros (Colapso de Edificio)

Las avalanchas de escombros son el resultado de “grandes deslizamientos” que pueden ocurrir en las laderas de un volcán. Durante estos eventos se desplazan enormes volúmenes de rocas y otros materiales a altas velocidades y a grandes distancias desde el volcán. Una forma coloquial de explicarlos sería que una porción de una ladera del volcán se desprende y se desliza formando una gran avalancha.

Varios de los volcanes del Arco Cuaternario Ecuatoriano han presentado uno o más eventos de avalancha de escombros durante su desarrollo, pero de todas maneras son fenómenos muy poco frecuentes. Estos eventos han sido representados en los mapas de peligro para los casos de algunos volcanes como por ejemplo el Tungurahua, Reventador, Chiles-Cerro Negro y Cotopaxi. Hay algunos casos de volcanes donde estos fenómenos han ocurrido en el pasado, pero no han sido representados en los mapas debido a que no existen condiciones para que se repitan en el futuro, como es el caso por ejemplo del Guagua Pichincha, entre otros.

En los Mapas de Amenazas, la zonificación corresponde a menudo a los depósitos de las avalanchas pasadas y usualmente son representados como líneas entrecortadas gruesas de color verde/azul. Sin embargo, cabe recalcar que este tipo de fenómenos tienen muy bajas probabilidades de ocurrir. Por esta razón, las avalanchas de escombros no siempre están graficadas en los Mapas de Amenazas, y cuando lo están, es únicamente con fines referenciales (Figura 6).

¿Cómo entender adecuadamente nuestros Mapas de Peligro Volcánico?
Figura 6.- Mapa de Peligros del Volcán Tungurahua (2008) mostrando dos líneas entrecortadas (azul y verde) para dos distintos escenarios de Avalancha de Escombros (Colapso de Edificio) con volúmenes de 1km3 y varios km3.


El ejemplo mejor documentado de una avalancha de escombros ocurrió durante la erupción del Mount Saint Helens (EE.UU.) en el año de 1980 (Figura 7).

¿Cómo entender adecuadamente nuestros Mapas de Peligro Volcánico?
Figura 7.- Avalancha de escombros durante la erupción del Mount Saint Helens el 18 de mayo de 1980.


Recuerda, los Mapas de Amenaza Volcánica para los Centros Volcánicos del Arco Ecuatoriano puedes encontrarlos en el sitio web del IG-EPN ingresando al siguiente link: https://www.igepn.edu.ec/mapas-historicos


D. Sierra, D. Andrade, A. Vásconez, B. Bernard.
Instituto Geofísico
Escuela Politécnica Nacional

Con los volcanes Cotopaxi, Reventador y Sangay en erupción (Fig. 1) y varios más que a veces presentan agitaciones internas y fumarolas en superficie, es importante calificar su actividad acorde a los resultados de la vigilancia volcánica. El Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN), como ente oficial de la vigilancia volcánica en Ecuador, ha desarrollado un sistema basado en varios parámetros para caracterizar la actividad interna y superficial de los volcanes ecuatorianos. Como cada volcán tiene características propias, los niveles de “actividad interna” y “actividad superficial” no son idénticos para todos. A continuación, se describe de manera general cómo se califica la actividad de los volcanes ecuatorianos.

¿Cómo se califica la actividad de los volcanes en Ecuador?
Figura 1.-Los tres volcanes en erupción en Ecuador en 2023, las imágenes muestran actividad eruptiva en Cotopaxi (23/02/2023), Reventador (25/02/2023) y Sangay (04/01/2023). Las tomas corresponden a las cámaras fijas del IG-EPN.


La actividad interna
La actividad interna de los volcanes ecuatorianos es evaluada con varias técnicas o ciencias que tienen como objetivo detectar la presencia y el movimiento de fluidos (magma o gas) dentro del edificio volcánico. La principal herramienta utilizada a nivel mundial y para el Ecuador es la sismología, que permite detectar y caracterizar fenómenos de diferentes tipos (sismos relacionados a apertura de fracturas, movimiento de fluidos, vibraciones sostenidas), mediante el uso de sismómetros ubicados en los flancos del volcán. También se utilizan las técnicas de geodesia, que permite observar cambios en la forma del volcán (inflación o deflación) con el uso de GPS continuos de alta resolución e inclinómetros. Existen otras técnicas complementarias, como por ejemplo la gravimetría, pero éstas (sismología y geodesia) son las más importantes para el diagnóstico de la actividad interna (Tabla 1).

¿Cómo se califica la actividad de los volcanes en Ecuador?
Tabla 1.- Niveles de actividad Interna para los volcanes del Ecuador.


Actividad superficial
La actividad superficial se relaciona con los productos emitidos por el volcán; igualmente se utilizan varias técnicas para detectar y caracterizar los fenómenos observados en superficie. Las emisiones de gas son cuantificadas gracias a instrumentos en el campo (DOAS, Multigas) y satélites. Las emisiones de ceniza son identificadas y caracterizadas en las imágenes de las cámaras instaladas en la cercanía del volcán y también desde satélites. Las explosiones son detectadas mediante el uso de sensores acústicos instalados en el campo. El calor emitido por los fenómenos volcánicos (proyectiles balísticos, flujos de lava o piroclásticos) es evaluado con cámaras de rango infrarrojo y desde satélites. Finalmente, los lahares son detectados mediante redes de sensores sísmicos, acústicos y cámaras.

El IG-EPN califica la actividad superficial en función de un conjunto de parámetros de vigilancia y fenómenos en superficie (Tabla 2).

¿Cómo se califica la actividad de los volcanes en Ecuador?
Tabla 2.- Niveles de actividad Superficial para los volcanes del Ecuador.


¿Qué significa la tendencia?
Adicionalmente se califica la tendencia de esta actividad en base a su evolución a corto plazo (días a semanas). La tendencia sin cambio significa que no se observan cambios significativos, mientras que las tendencias ascendente o descendente indican que los parámetros de vigilancia han experimentados una aceleración o desaceleración en los últimos días. La tendencia es más variable que los niveles de actividad ya que dentro de un nivel pueden producirse frecuentes altos y bajos (Fig. 2).

¿Cómo se califica la actividad de los volcanes en Ecuador?
Figura 2.- Esquema ilustrando los cambios en la tendencia de un parámetro de monitoreo volcánico.


¿Por qué decimos que la actividad superficial actual del Cotopaxi es moderada y al mismo tiempo que la erupción es pequeña?
Es importante no confundir el nivel de actividad superficial y el tamaño de la erupción. Desde el 21 de octubre de 2022, el volcán Cotopaxi ha empezado un nuevo periodo eruptivo. La actividad superficial del Cotopaxi ascendió de un nivel de actividad superficial bajo (solo columnas de gas <1 km sobre el nivel del cráter) a moderado (columnas de emisión de gas y ceniza <3 km sobre el nivel del cráter, caída de ceniza a nivel cantonal como único fenómeno volcánico que repasa los límites del cráter, anomalías térmicas limitadas a la zona del cráter). Sin embargo, el hecho de que el tamaño de esta erupción sea calificado como pequeño puede causar confusión.

Para entender esta diferencia debemos conocer la escala más utilizada a nivel mundial para calificar el tamaño de una erupción explosiva, el cual es el Índice de Explosividad Volcánica (VEI, por sus siglas en inglés) definido por Newhall y Self en 1982 (Fig. 3).

¿Cómo se califica la actividad de los volcanes en Ecuador?
Figura 3.- Índice de Explosividad Volcánica, mostrando el volumen de material piroclástico (modificado de Wikipedia).


Este índice tiene como principales criterios el volumen de material piroclástico (fragmentos de magma y rocas de tamaño de ceniza, lapilli y bloques). Una erupción con un volumen inferior a 0.00001 km3 de material emitido (equivalente a 1 428 volquetas de 7 m3 o 4 piscinas olímpicas) tiene un VEI de 0 y es calificada como no-explosiva.

Una erupción con un volumen de 0.00001 a 0.001 km3 de material emitido tiene un VEI de 1 y es calificada como pequeña. La erupción actual del Cotopaxi ha emitido aproximadamente 0.00017 km3 hasta el mes de febrero de 2023 lo que permite calificarla con VEI de 1.

Por otra parte, una erupción con un volumen de 0.001 a 0.01 km3 de material emitido corresponde a un VEI de 2 y es calificada como moderada. Durante la erupción de 2015, el Cotopaxi emitió aproximadamente 0.0012 km3 de material lo que permitiría calificar su erupción como VEI de 2 (Bernard et al., 2016). Según estudios recientes, la erupción del 26 de junio de 1877 que tiene un VEI de 3 que la califica como una erupción moderada a grande mientras que la erupción del Cotopaxi del 30 de noviembre al 2 de diciembre 1744 tiene un VEI de 4 y se califica como una erupción grande (Pistolesi et al., 2011). Hay que indicar que en tiempos pre-históricos (antes de 1532, con la llegada de los españoles) ocurrieron erupciones muy grandes con VEI de 5 y 6 en el Cotopaxi (Hall y Mothes, 2008).

El Cotopaxi atraviesa un nuevo proceso eruptivo y lo más importante es permanecer informados y prepararse. Conoce el mapa de potenciales amenazas en caso de una erupción moderada a grande del Volcán Cotopaxi. ¿Dónde queda tu casa? ¿Tu lugar de trabajo? ¿La escuela de tus niños?

Explora el mapa interactivo: https://www.igepn.edu.ec/mapas/amenaza-volcanica/mapa-volcan-cotopaxi.html
Encuentra información importante sobre qué hacer frente a una erupción: https://alertasecuador.gob.ec/

 

Referencias

  • Bernard, B., Battaglia, J., Proaño, A., Hidalgo, S., Vásconez, F., Hernandez, S., & Ruiz, M. (2016). Relationship between volcanic ash fallouts and seismic tremor: Quantitative assessment of the 2015 eruptive period at Cotopaxi volcano, Ecuador. Bulletin of Volcanology, 78(11), 80. https://doi.org/10.1007/s00445-016-1077-5.
  • Hall, M., & Mothes, P. (2008). The rhyolitic–andesitic eruptive history of Cotopaxi volcano, Ecuador. Bulletin of Volcanology, 70(6), 675–702. https://doi.org/10.1007/s00445-007-0161-2.
  • Newhall, C. G., & Self, S. (1982). The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. Journal of Geophysical Research: Oceans, 87(C2), 1231–1238. https://doi.org/10.1029/JC087iC02p01231.
  • Pistolesi, M., Rosi, M., Cioni, R., Cashman, K. V., Rossotti, A., & Aguilera, E. (2011). Physical volcanology of the post–twelfth-century activity at Cotopaxi volcano, Ecuador: Behavior of an andesitic central volcano. Geological Society of America Bulletin, 123(5–6), 1193–1215. https://doi.org/10.1130/B30301.1.

 

B. Bernard, D. Sierra
Corrector de Estilo: G. Pino
Instituto Geofísico
Escuela Politécnica Nacional

No es una tarea fácil saber la cantidad de gas que está saliendo por el vento de un volcán, sin embargo existen un par de técnicas de detección remota que nos permiten estimar el flujo de gas. La técnica que se utiliza en el IG se denomina DOAS (Differential Optical Absorption Spectroscopy), y consiste en determinar la cantidad de luz absorbida por una cierta especie de gas. Podría simplificarse asociando a la idea de “medir la sombra” que produce el gas emanado…

El 21 de octubre y el 26 de noviembre de 2022 el volcán Cotopaxi produjo dos caídas de ceniza, la primera restringida en la zona cercana al volcán y la segunda, mucho más amplia afectando incluso a la parte sur de Quito.

La ceniza de ambos eventos fue recolectada por personal del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) lo más pronto posible después de las caídas y se inició el proceso de preparación de las muestras para su análisis y posterior interpretación. Este es un procedimiento estandarizado en el que se siguen una serie de pasos para asegurar la calidad de los resultados. Aquí les presentamos cómo trabajamos con la ceniza volcánica.


¿Cómo se recolecta la ceniza volcánica?

Tenemos al menos dos posibilidades:

1.- Toma de muestras directamente sobre las superficies afectadas: Lo ideal es recoger la ceniza depositada sobre una superficie previamente limpia. Por ejemplo, sobre un techo limpio, sobre el capó o el parabrisas de un vehículo limpio, u otro. Es importante medir el área de recolección para calcular la carga (masa de ceniza por unidad de área, típicamente expresado en kg/m2 o g/m2). Si el depósito tiene más de 1 mm de espesor, también se puede medir este parámetro (Figura 1).

¿Cómo trabajamos con las muestras de ceniza volcánica?
Figura 1.- Fotos de los depósitos asociados a la caída de ceniza del 21/10/2022. A: Refugio del Cotopaxi (foto: Benjamin Bernard, IG-EPN); B: Carro cubierto de ceniza (foto: Cristian Rivera, ASEGUIM); C: panel solar de una estación del INAMHI (foto: Marco Solís/ IG-EPN).


2.- Toma de muestras en cenizómetros: El personal del IG-EPN ha diseñado recolectores especiales de ceniza llamados cenizómetros (Bernard, 2013). Se han instalado cenizómetros en zonas cercanas a volcanes activos y también en todo el territorio ecuatoriano gracias a la Red de Observadores Volcánicos del Ecuador (ROVE). Estos dispositivos ayudan a la medición (espesor, carga y densidad) y recolección de la caída de ceniza y también se utilizan en otros países como Perú, Colombia, Chile, Costa Rica, Nicaragua y Guatemala. Una vez que cae la ceniza, se mide el espesor (hasta 0,1 mm según el modelo) y se recoge el material. Luego se limpia el cenizómetro y queda listo para una siguiente caída. Estos cenizómetros tienen la gran ventaja de permitir el muestreo de la ceniza (aún en caso de eventos con muy poca ceniza emitida) y proteger la ceniza del viento o la lluvia, de tal manera que la muestra que se obtiene es prácticamente inalterada (Figura 2).

¿Cómo trabajamos con las muestras de ceniza volcánica?
Figura 2.- Fotos de cenizómetros instalados por personal del IG-EPN. A: Machachi, provincia de Pichincha (foto: B. Bernard, IG-EPN); B: Palmira, provincia de Chimborazo (foto: B. Bernard/ IG-EPN).


Independientemente del método de recolección, la muestra es sellada en una funda plástica y etiquetada para su posterior análisis. La información clave que debe tener la etiqueta es el nombre del lugar de muestreo con las coordenadas GPS (latitud, longitud y altitud), la fecha de recolección y el área de muestreo. Se puede añadir información sobre la humedad, la masa in situ, indicios de alteración o contaminación de la muestra, etc. (Figura 3).

¿Cómo trabajamos con las muestras de ceniza volcánica?
Figura 3.- Filtros de cenizómetros y muestras de ceniza colectados cerca del volcán Cotopaxi el 29/11/2022 (fotos: B. Bernard/ IG-EPN).



¿Cómo se analiza la ceniza volcánica?

Secado de las muestras: El primer paso del análisis de la ceniza es secar las muestras en una mufla (horno especial de laboratorio) a una temperatura de 40 a 60 °C por 24 a 48 horas dependiendo de su humedad (Figura 4).

¿Cómo trabajamos con las muestras de ceniza volcánica?
Figura 4.- Mufla de secado de muestras (foto: S. Hidalgo, IG-EPN).


Pesado de las muestras: En el segundo paso se pesa la ceniza seca con una balanza electrónica. Esto permite calcular con precisión la carga de ceniza seca en los diferentes sitios de muestreo y determinar si la caída de ceniza es muy leve (<10 g/m2), leve (10-100 g/m2), moderada (100-1000 g/m2), fuerte (1-10 kg/m2) o muy fuerte (>10 kg/m2). El nivel de impacto de la caída de ceniza sobre la agricultura, la ganadería y las infraestructuras depende en gran medida de la carga. Por ejemplo, una caída muy leve no provoca daños significativos en cultivos como la papa y el maíz, mientras que una caída muy fuerte puede provocar su destrucción total (Figura 5).

¿Cómo trabajamos con las muestras de ceniza volcánica?
Figura 5.- Pesado de la ceniza en balanza electrónica (foto: S. Hidalgo/ IG-EPN).


Tamizado de las muestras: Este ensayo utiliza tamices con aperturas de diferentes diámetros y tiene dos propósitos. En primer lugar, permite obtener la distribución de tamaño de las partículas desde 45 mm hasta 63 µm (0,063 mm). El IG-EPN completa el análisis granulométrico utilizando un analizador de partículas que mide con un láser el tamaño de las partículas entre 5 mm y 30 nm (0,00003 mm). Así se puede clasificar y determinar si la ceniza puede tener afectación a la salud, ya que cuanto más fina es la ceniza, más profundo ingresa en nuestro sistema respiratorio. En segundo lugar, el tamizado separa la ceniza por tamaño, lo cual es necesario para comprender los dinamismos eruptivos, en particular el grado de fragmentación del magma (Figura 6).

¿Cómo trabajamos con las muestras de ceniza volcánica?
Figura 6.- Distribución granulométrica de la muestra recolectada en el refugio del Cotopaxi el 22/10/2022 (tamizaje: Anaís Vásconez y Edwin Telenchana; difracción láser: Benjamin Bernard; síntesis y deconvolución: Benjamin Bernard; software deconvolución DECOLOG 6.0).


Clasificación de la ceniza: Se selecciona una o más fracciones de un tamaño representativo de la muestra de ceniza para observarlas con un microscopio binocular (Figura 7). Para facilitar el análisis primero se lava las fracciones deseadas en un baño de ultrasonido para que los granos estén perfectamente limpios. El análisis con el microscopio binocular permite identificar los componentes de la ceniza. La ceniza volcánica puede tener material juvenil (el cual representa directamente al magma que está generando la actividad volcánica), material accidental (que proviene típicamente del conducto volcánico y se ha acumulado durante erupciones pasadas), material híbrido (proveniente de la interacción del magma con el sistema hidrotermal del edificio volcánico), entre otros (Figura 8).

¿Cómo trabajamos con las muestras de ceniza volcánica?
Figura 7.- Microscopio binocular equipado con cámara para observación y clasificación componentes (foto: S. Hidalgo, IG-EPN).


¿Cómo trabajamos con las muestras de ceniza volcánica?
Figura 8.- Componentes de la ceniza recolectada en el refugio del Cotopaxi el 22/10/2022 visto en microscopio binocular (fotos: Benjamin Bernard, IG-EPN). A1: fragmento accidental gris; A2: fragmento accidental hidrotermal con pirita; A3: fragmento accidental rojizo oxidado; J1: fragmento juvenil oscuro; J2: fragmento juvenil gris; J3: fragmento juvenil miel.


Separación de la ceniza: Se escoge bajo el microscopio binocular los granos de material juvenil con el fin de identificar las características del magma que está produciendo la actividad volcánica. El material juvenil tiene un aspecto fresco (sin ningún tipo de alteración), brillo vítreo, es angular y generalmente presenta vesículas (estructuras redondeadas que se forman debido a la presencia de burbujas de gas en el magma; Figura 9).

¿Cómo trabajamos con las muestras de ceniza volcánica?
Figura 9.- Selección individual de los granos bajo microscopio binocular (foto: S. Hidalgo/ IG-EPN).


Análisis textural de la ceniza: Los granos seleccionados se pueden analizar en un microscopio electrónico de barrido (SEM=Scanning Electron Microscope) o, para mayor precisión, pueden ser pegados con una resina especial sobre un soporte que permitirá su análisis en un instrumento llamado microsonda electrónica (EMP= Electron microprobe). Como no existe este tipo de instrumento en el Ecuador, el IG-EPN envía los granos seleccionados al Laboratorio Magmas y Volcanes en Clermont-Ferrand, Francia, donde nuestros colegas y colaboradores preparan las muestras en los soportes, las pulen y las cubren con una capa de carbono para que se pueda realizar el análisis puntual por bombardeo de electrones a la muestra. Este instrumento permite tomar imágenes de altísima resolución de los granos de ceniza analizados y comprobar su carácter juvenil (Figura 10).

¿Cómo trabajamos con las muestras de ceniza volcánica?
Figura 10.- Imágenes con microscopio binocular (izquierda) e imágenes con microsonda electrónica (derecha) de granos de ceniza de la fracción 250-355 µm de diámetro. Se observa claramente las vesículas en los granos y el vidrio volcánico inalterado. La partícula gris es la más cristalina y masiva mientras que la partícula miel es la más vidriosa y vesiculada. Imágenes y análisis: Jean-Luc Devidal (LMV, Clermont Ferrand).


Análisis químicos de la ceniza: la microsonda electrónica permite además obtener la composición química del vidrio volcánico y de los minerales de la ceniza. Estos resultados se grafican en diferentes diagramas para clasificar al magma en función de su composición química, y para compararla con composiciones del mismo volcán u otros volcanes de similar comportamiento. Esto permite determinar la naturaleza del magma y aporta a la generación de los escenarios eruptivos (Figura 11).

¿Cómo trabajamos con las muestras de ceniza volcánica?
Figura 11.-Ejemplo de diagrama CaO (óxido de calcio) vs. SiO2 (sílice), en porcentaje en peso (wt. %). Se ha graficado los análisis de las cenizas del Cotopaxi del 2015 para comparación (Gaunt el al., 2016 e Hidalgo et al., 2018). Se observa que los granos del 2022 son más máficos (menor contenido de sílice) que los del 2015. Esto indica la participación de un magma juvenil más máfico como responsable de la actividad actual del Cotopaxi.


Condiciones pre-eruptivas del magma: Con las composiciones del vidrio de la matriz y de los minerales se puede aplicar geotermómetros y geobarómetros especializados (Putirka, 2008) que permiten calcular la temperatura y otros parámetros, a los cuales se encontraría el magma en el reservorio o cámara magmática. En este caso las temperaturas calculadas en base a estas composiciones están entre 850 y 1050 °C.

El IG-EPN seguirá recolectando la ceniza proveniente del Cotopaxi con el fin de entender de mejor manera el origen del magma responsable de la actividad volcánica actual y de generar escenarios eruptivos acordes con sus características.

Estos análisis de alta precisión son posibles gracias a la colaboración que el IG-EPN mantiene con el Instituto Francés de Investigación para el Desarrollo (IRD), el Laboratorio Magmas y Volcanes de Clermont-Ferrand y el Departamento de Geología de la EPN.

 

Referencias

  • Gaunt, H. E., Bernard, B., Hidalgo, S., Proaño, A., Wright, H., Mothes, P., et al. (2016). Juvenile magma recognition and eruptive dynamics inferred from the analysis of ash time series: The 2015 reawakening of Cotopaxi volcano. Journal of Volcanology and Geothermal Research, 328, 134–146. https://doi.org/10.1016/j.jvolgeores.2016.10.013
  • Hidalgo, S., Battaglia, J., Arellano, S., Sierra, D., Bernard, B., Parra, R., et al. (2018). Evolution of the 2015 Cotopaxi eruption revealed by combined geo- chemical and seismic observations. Geochemistry, Geophysics, Geosystems, 19. https://doi.org/10.1029/ 2018GC007514
  • Putirka, K. D. (2008). Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry, 69(1), 61–120. https://doi. org/10.2138/rmg.2008.69.3

 

P. Samaniego, J.L. Devidal, F. Schiavi
Centre national de la recherche scientifique
Institut de Recherche pour le Développement
Laboratoire Magmas et Volcans
Université Clermont – Auvergne
Observatoire de Physique du Globe de Clermont-Ferrand

D. Narváez
Departamento de Geología
Escuela Politécnica Nacional

S. Hidalgo, B. Bernard, A. Vasconez, E. Telenchana, M. Almeida, M. Córdova, M. Encalada, F.J. Vásconez, D. Sierra.
Instituto Geofísico
Escuela Politécnica Nacional