Gracias a la coordinación interinstitucional entre la Presidencia de la República del Ecuador, Ministerio de Defensa, Servicio Nacional de Gestión de Riesgos y Emergencias, Gobernación de Cotopaxi y la Fuerza Aérea Ecuatoriana, el personal técnico del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) pudo efectuar un sobrevuelo de monitoreo al volcán Cotopaxi el 28 de noviembre de 2022.

Sobrevuelo de monitoreo efectuado el 28 de noviembre de 2022 al volcán Cotopaxi
Figura 1. (Der.) Ruta del sobrevuelo efectuado al volcán Cotopaxi el día 28 de noviembre de 2022 (Base topográfica: Google Earth). (Izq.) Tripulación del sobrevuelo y personal del IG-EPN, el 28 de noviembre de 2022 (Foto: FAE).


La misión consistió en dar varias vueltas al cráter del volcán para realizar mediciones mediante imágenes térmicas, imágenes con cámara de espectro visual y mediciones de razones de especies gaseosas. Durante el vuelo, que duró poco más de una hora, se siguió la ruta mostrada en la figura 1, con una altura máxima 7400 m sobre el nivel del mar.
Mientras se realizó el sobrevuelo, la parte superior del volcán Cotopaxi se mostraba despejada con una columna de emisión principalmente de gas con bajo contenido de ceniza, que alcanzaba 500 metros sobre la cumbre (figura. 2). De igual manera, se pudo apreciar una amplia cobertura de nieve en el edificio volcánico.

Sobrevuelo de monitoreo efectuado el 28 de noviembre de 2022 al volcán Cotopaxi
Figura 2. Columna de emisión de gas (coloración azulada), dispersándose en dirección noroeste, con una altura media de 500 m sobre el nivel del cráter. Vista desde el flanco noroeste del volcán. Nótese la pared de “Yanasacha”, localizada justo bajo la cumbre norte (Foto: J. Barros/ IG EPN).


Las imágenes térmicas obtenidas no muestran variación en la temperatura de los campos fumarólicos, ni en las paredes internas del conducto en el cráter del volcán. Sin embargo, no se obtuvieron imágenes claras del fondo del cráter dada la alta cantidad de gases que se encuentran en emisión, lo cual limita las capacidades de la cámara térmica. Las temperaturas máximas aparentes obtenidas no superan los 40 °C (figura. 3).

Sobrevuelo de monitoreo efectuado el 28 de noviembre de 2022 al volcán Cotopaxi
Figura 3. Fotografía del cráter del volcán e imagen térmica correspondiente tomada desde el suroccidente. La imagen térmica muestra temperaturas que no superan los 40 °C (zonas en color amarillo) (Imágenes: M. Almeida, S. Vallejo/ IGEPN).


El equipo MultiGAS es capaz de medir las concentraciones de 4 diferentes tipos de especies gaseosas, todas ellas magmáticas (Agua: H2O, Dióxido de carbono: CO2, Dióxido de azufre: SO2 y Ácido sulfhídrico: H2S). Se realizaron 3 cortes a la pluma de gas, un ejemplo de uno de ellos se puede ver en la figura 4. En cada una de estas transectas fue posible medir la totalidad de las especies gaseosas, con líneas de vuelo entre los 6900 y 6500 msnm. Las razones gaseosas siguen mostrando un origen magmático en la proveniencia de los gases y su interpretación será tratada más a detalle en la emisión del próximo informe especial.

Sobrevuelo de monitoreo efectuado el 28 de noviembre de 2022 al volcán Cotopaxi
Figura 4. (Der.) Vista del flanco suroriental del volcán desde los 6500 msnm. En el recuadro se puede observar el pico generado por los gases presentes en la pluma durante la transecta. (Izq.) Personal del IG-EPN dentro del avión Twin Otter, realizando actividades de medición de gases y termografía (Fotos: M. Almeida, D. Sierra /IG EPN).


Al momento de la emisión de este informe, la actividad del volcán sigue siendo catalogada como: Superficial Moderada con tendencia ascendente e Interna Moderada con tendencia ascendente. Se recomienda recibir la información únicamente de fuentes oficiales. El Instituto Geofísico de la Escuela Politécnica Nacional informará oportunamente en caso de registraste algún cambio en la actividad.


M. Almeida, D. Sierra, M. Ruiz
Corrector de Estilo: G. Pino
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Comunidad

Ecuador estuvo presente en el Curso de Co-Creación de Conocimientos con enfoque en la “Reducción de Manejo de Desastres Volcánicos para países de América Central y del Sur”, organizado por la Agencia de Cooperación Internacional de Japón (JICA), junto con la Organización de Reducción de Desastres Volcánicos (NPO VOLCANO), en el cual participaron 12 profesionales de los organismos científicos y de gestión de riesgo de: Chile, Costa Rica, Guatemala, México, Nicaragua y Perú (Figura 1).

Participación del IG-EPN en el curso 'Reducción y Manejo de Desastres Volcánicos para países de América Central y del Sur'
Figura 1.- Foto grupal en la sesión de clausura de los participantes del Curso “Reducción de Manejo de Desastres Volcánicos para Países de América Central y del Sur”, organizado por JICA y NPO VOLCANO (Foto: S. Vaca/ IG-EPN).


En representación del Ecuador asistieron Gabriela Solís, del Servicio Nacional de Gestión de Riesgo y Emergencias (SNGRE) y Sandro Vaca, del Área de Sismología del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN). Ambos presentaron ponencias sobre la realidad que vive el país respecto a las Amenazas Volcánicas (Figura 2).

Participación del IG-EPN en el curso 'Reducción y Manejo de Desastres Volcánicos para países de América Central y del Sur'
Figura 2.- (Izq.) Gabriela Solís. (Der.) Sandro Vaca, presentando sus propuestas de Plan de Acción, a desarrollar una vez que el curso haya finalizado (Fotos: T. Hosokawa - JICA).


Este curso se desarrolló en modalidad mixta, contando con un componente virtual, entre el 22 de septiembre y el 04 de octubre de 2022, y otro componente presencial donde los participantes viajaron a Japón del 10 de octubre al 09 de noviembre de 2022.

Los temas tratados durante el curso incluyeron las diversas situaciones vividas en cada país participante y en Japón, todos vinculados al manejo de desastres volcánicos, tanto desde el punto de vista científico como el vinculado a la gestión del riesgo. Así mismo, se desarrollaron actividades para observar las medidas de mitigación implementadas por el país asiático, con el fin de reducir eficazmente los riesgos de catástrofes volcánicas.

La componente virtual del curso tuvo como objetivo principal brindar el conocimiento teórico-técnico sobre el riesgo volcánico. Además, permitió compartir experiencias en la implementación de contramedidas en Japón para mitigar los riesgos. Se discutió también la comprensión de los sistemas legales, planes y operaciones en cuanto al manejo del riesgo de desastres volcánicos, tanto de Japón como de los otros países invitados.

Participación del IG-EPN en el curso 'Reducción y Manejo de Desastres Volcánicos para países de América Central y del Sur'
Figura 3.- Foto grupal en el volcán Usu, que incluye participantes, instructores, coordinadores y “Maestros de Volcán” (grupo de personas de la comunidad que guían y enseñan sobre los peligros y beneficios asociados a los volcanes). En la parte posterior se observa el domo Showa-Shinzan, formado en la década de 1940 y cuyo crecimiento fue muy bien documentado por Masao Mimatsu. (Foto: S. Vaca).


Durante la componente presencial del curso, se dieron a conocer las diversas acciones de monitoreo y mitigación realizadas por parte de los organismos técnicos-científicos, Gobiernos (tanto Nacionales como Locales) y, sobre todo, mostrar la concientización de las comunidades asentadas cerca de los volcanes Fuji y Usu (localizados al centro y norte de Japón respectivamente; Figura 3).

Finalmente, como parte de las experiencias compartidas, los participantes se comprometieron a implementar acciones, durante los próximos años, que estén encaminadas a la reducción de desastres volcánicos en sus respectivos países.


S. Vaca, D. Sierra
Corrector de Estilo: G. Pino
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Comunidad
Viernes, 25 Noviembre 2022 10:01

Vigilancia volcánica con drones en el Cotopaxi

Gracias a las autorizaciones del Ministerio de Ambiente, Agua y Transición Ecológica (MAATE) y de la Dirección General de Aviación Civil (DGAC), y al apoyo del Parque Nacional Cotopaxi, personal del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) realizó vigilancia volcánica con drones (Fig. 1) en el Cotopaxi en los días 08, 18, 22 y 24 de noviembre de 2022.

Vigilancia volcánica con drones en el Cotopaxi
Figura 1.- Cráter del volcán Cotopaxi con emisión de gases, 18 de noviembre de 2022 (foto: B. Bernard – IGEPN).


En estas ocasiones se utilizaron dos drones (DJI Mavic 3 y DJI Matrice 210 con cámara dual Zenmuse XT2) para la toma de fotos y videos en rango visual e infrarrojo (Fig. 2). Las condiciones meteorológicas del 08 de noviembre, en particular los fuertes vientos y la abundante nubosidad, limitaron el número de vuelos y de imágenes adquiridas. Las condiciones meteorológicas más favorables de los días 18, 22 y 24 de noviembre permitieron realizar más vuelos y adquirir más imágenes visuales y térmicas. Los drones despegaron desde el parqueadero de refugio José Ribas y alcanzaron el cráter del volcán Cotopaxi.

Vigilancia volcánica con drones en el Cotopaxi
Figura 2.- Drone DJI Matrice 210 con cámara Zenmuse XT2 para la toma de imágenes visuales e infrarrojas (foto: A. Vásconez – IGEPN).


Entre el vuelo del 08 de noviembre y los vuelos del 18 y 22 de noviembre se notó una mayor presencia de nieve en el volcán, la cual cubrió el depósito de ceniza asociado al pulso de actividad del 21 de octubre 2022 (Informe Volcánico Especial – Cotopaxi – 2022 – N°001). También se observó una mayor emisión de gases en los días 18 y 22 de noviembre comparado con el 08 de noviembre (Fig. 3).

Vigilancia volcánica con drones en el Cotopaxi
Figura 3.- Cumbre del volcán Cotopaxi con ceniza (08/11/2022) y nieve (22/11/2022) (fotos: B. Bernard – IGEPN).


El 24 de noviembre se pudo comprobar la presencia de ceniza en los flancos oriental y nororiental del Cotopaxi, la cual está asociada a los pulsos de tremor de emisión ocurridos en la tarde del 23 de noviembre (IGalinstante Volcán Cotopaxi – 2022 – N°008). Adicionalmente el 24 de noviembre se logró realizar una ortofotografía y un modelo digital de terreno de la zona de la cumbre para futuras referencias (Video).


Entre el 18 y el 22 de noviembre no se detectaron cambios significativos en la temperatura de la zona de Yanasacha, la cual mantiene una temperatura máxima aparente entre 10 y 20 °C (Fig. 4). El 24 de noviembre se constataron temperaturas normales en los diferentes campos fumarólicos (oriental, occidental, cráter).

Vigilancia volcánica con drones en el Cotopaxi
Figura 4.- Temperaturas máximas aparentes medidas en la zona de Yanasacha (imágenes: B. Bernard – IGEPN).


AGRADECIMIENTO: El Instituto Geofísico de la Escuela Politécnica Nacional extiende un profundo agradecimiento al Ministerio del Ambiente, Agua y Transición Ecológica y a la Dirección General de Aviación Civil para autorizar el vuelo de drones en la zona del volcán Cotopaxi. Adicionalmente, agradecemos al Parque Nacional Cotopaxi y a sus guardaparques que apoyaron al personal del IG-EPN para realizar esta tarea.


B. Bernard, A. Vásconez, M. Córdova, E. Telenchana
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Comunidad

Entre el 09 y 18 de noviembre DE 2022, técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) realizaron la tercera campaña de mantenimiento y recolección de datos de las estaciones de monitoreo de la RENGEO (Red Nacional de Geodesia) ubicadas en las provincias de Esmeraldas, Manabí, Santo Domingo de los Tsáchilas, Guayas y Santa Elena.

Las estaciones geodésicas cuentan con equipos receptores GNSS marca Trimble modelos Alloy, NetRS y NetR9, los cuales toman medidas en intervalos de 30, 1 y 0.2 segundos.

Adicionalmente se instalaron 2 estaciones GNSS marca Leica modelo GR50, en Puerto Cayo (Manabí) y Laguna Cube (Esmeraldas) con el objetivo de modernizar los equipos instalados en estos lugares, los cuales funcionaron por mas de 10 años.

Mantenimiento y recolección de datos de las estaciones de la Red Nacional de Geodesia (RENGEO) ubicadas en la costa ecuatoriana
Figura 1: Verificación de funcionamiento de equipos, mantenimiento y descarga de datos en la estación de monitoreo Arashá.


Mantenimiento y recolección de datos de las estaciones de la Red Nacional de Geodesia (RENGEO) ubicadas en la costa ecuatoriana
Figura 2: Mantenimiento de la infraestructura física y revisión de equipos de la estación de monitoreo Punta Prieta.


La RENGEO cuenta con más de 80 estaciones de monitoreo a nivel nacional, las cuales permiten mantener la vigilancia de desplazamientos relativos de las estructuras geológicas a lo largo del país.

Esta campaña fue realizada con éxito gracias a la colaboración entre el Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) y el Instituto de Investigación para el Desarrollo (IRD) de Francia dentro del marco del Proyecto S5, y la buena voluntad de los propietarios donde están ubicadas las distintas estaciones.


A. Herrera, J. Yerovi
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Comunidad

Cumpliendo con los objetivos del Proyecto “HIP Preparativos Sangay”, financiado por la Oficina de Ayuda Humanitaria y Protección Civil de la Comisión Europea (ECHO) y ejecutado por el Programa de las Naciones Unidas para el Desarrollo (PNUD), entre el 08 y el 10 de noviembre de 2022, técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) realizaron un Curso de Formación de Formadores para impartir Talleres Interactivos sobre Peligros Sísmicos y Volcánicos.

El objetivo de estos Cursos es que más personas se encuentren capacitadas y puedan compartir el conocimiento adquirido sobre los Peligros Sísmicos y Volcánicos para preparar a la población y así minimizar los efectos negativos de eventos adversos, como erupciones volcánicas y terremotos, sobre la salud y los medios de vida; especialmente en relación con la caída de ceniza.

El martes 08 de noviembre, se llevó a cabo el Curso con los Docentes de las Unidades Educativas (UE) de los Cantones Guamote, al cual asistieron 42 participantes (Fig. 1). El miércoles 09 de noviembre se realizó el Curso de Formación con los Docentes de las Unidades Educativas del Cantón Colta, al cual asistieron un total de 25 personas (Fig. 2). Y el jueves 10 de noviembre el curso se desarrolló con Técnicos de las Unidades de Gestión de Riesgo (UGR) de los diez cantones de la Provincia de Chimborazo; Técnicos del Servicio Nacional de Gestión de Riesgos y Emergencias (SNGRE); y representantes de las UGR de los cantones Ambato, Salcedo y Latacunga (Fig. 3).

Curso Formación de Formadores para impartir talleres interactivos
Figura 1. Momentos del Curso Formación de Formadores con los Docentes de las UE del cantón Guamote (Fotos: A. Vásconez y E. Telenchana / IG-EPN).


Durante este Curso de Formación de Formadores se trataron temas relacionados al peligro sísmico y volcánico, y cómo impartirlo a la población dentro de sus instituciones, con diferentes materiales como videos, maquetas, gigantografías, mapas, imágenes, muestras de ceniza, incluso al aire libre. También se llevó a cabo un ejercicio práctico en el cual los participantes debían replicar ciertas partes del Taller Interactivo como si ya lo estuvieran impartiendo en sus instituciones. Además, elaboraron un Plan de Réplica, detallando a quiénes y a cuántas personas van a replicar el Taller, además de las jornadas de capacitación planeadas.

Curso Formación de Formadores para impartir talleres interactivos
Figura 2. Momentos del Curso Formación de Formadores con los Docentes de las UE del cantón Colta (Fotos: A. Vásconez y E. Telenchana / IG-EPN).


Al finalizar el Curso, por parte de ECHO y PNUD se les entrego unos Kits a los representantes de cada Institución (Docentes y Técnicos). Estos Kits contenían equipos, materiales e insumos para facilitar su explicación al momento de realizar la réplica del Taller Interactivo.

Curso Formación de Formadores para impartir talleres interactivos
Figura 3. Momentos del Curso Formación de Formadores con los Técnicos de las UGR de los diferentes cantones que participaron y del SNGRE (Fotos: A. Vásconez y E. Telenchana / IG-EPN).


E. Telenchana, A. Vásconez.
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Comunidad

Como parte de la vigilancia volcánica que el Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) lleva a cabo en los principales volcanes del Ecuador, un grupo de técnicos del Instituto realizó una campaña de medición y muestreo en fuentes termales asociadas al volcán Quilotoa del 20 al 21 de octubre de 2022.

Inventario de Fuentes Termales en el volcán Quilotoa
Figura 1.- Lago cratérico del volcán Quilotoa, 20/10/2022 (Foto: D. Sierra/ IG-EPN).


El volcán Quilotoa, con 3914 msnm, es un volcán con lago cratérico perteneciente a la Cordillera Occidental, es considerado como “Potencialmente Activo” y se ubica al Oeste de la ciudad de Latacunga. Su última erupción tuvo lugar hace aproximadamente 800 años (siglo XII), produciéndose grandes flujos piroclásticos y un depósito de caída de ceniza que se encuentra distribuido a lo largo del Norte del país.

Durante esta campaña se inventarió un total de 5 fuentes termales localizadas principalmente en el flanco oriental del Quilotoa, las temperaturas de éstas van de los 20°C hasta los 37°C. Se llevaron a cabo mediciones de parámetros físico-químicos del agua y también se recolectaron muestras de agua que serán analizadas en el Centro de Investigación y Control Ambiental (CICAM) de la EPN, para la determinación de las especies mayoritarias. Cabe destacar que muchos de los puntos visitados no han sido adecuadamente descritos en la literatura, así que esta es una primera aproximación a su entendimiento.

Inventario de Fuentes Termales en el volcán Quilotoa
Figura 2.- (Izq.) Medición de parámetros físico-químicos en la fuente termal de Padre Rumi (Foto: S. Hidalgo/ IG-EPN). (Der.) Medición de parámetros físico-químicos en la fuente termal de Kunuk Yaku (Foto: D. Sierra/ IG-EPN).


Estas tareas forman parte de las actividades de monitoreo rutinario que realiza el IG-EPN en las zonas de influencia volcánica, para mejorar el entendimiento de la dinámica de los centros volcánicos.

¿Quieres aprender más sobre los fluidos volcánicos? Visita el siguiente link: https://www.igepn.edu.ec/publicaciones-para-la-comunidad/comunidad-espanol/21957-fluidos-volcanicos-aguas-termales-y-gas

D. Sierra, S. Hidalgo.
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Comunidad

Entre el 18 y el 20 de septiembre de 2022, técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) realizaron la recolección de muestras de ceniza y el mantenimiento de la red de cenizómetros ubicados en las comunidades al occidente del volcán Sangay, en la Provincia de Chimborazo (Fig. 1).

Trabajo de campo
El volcán Sangay, ubicado en la provincia de Morona Santiago, es uno de los volcanes más activos del país. Desde 2019 presenta una actividad eruptiva catalogada como de nivel moderado a alto. Han ocurrido constantes emisiones y caídas de ceniza que han afectado ampliamente a comunidades localizadas al Occidente del volcán. La ceniza puede resultar peligrosa para la salud, causando irritación de piel y ojos, así como problemas respiratorios. De igual forma la ceniza ha impactado la agricultura y ganadería. El mantenimiento de los cenizómetros permitió a los técnicos del IG-EPN recolectar muestras de ceniza asociadas a las emisiones ocurridas entre el 12 de septiembre y el 18 de octubre de 2022 (Fig. 2). Durante este periodo se han reportado 158 alertas de dispersión de ceniza poco energéticas (menor a 3000 metros sobre el nivel de cráter), una de las cuales alcanzó hasta 450 km de distancia desde el volcán según los reportes satelitales del Centro de Alertas de Ceniza Volcánica de Washington (Washington VAAC). Estas emisiones de ceniza se dirigieron principalmente hacia el occidente y noroccidente del volcán, sobrepasando la línea costera y provocando caída de ceniza principalmente en la provincia de Chimborazo.

La red de cenizómetros permitió cuantificar la cantidad de ceniza en cada una de las siguientes poblaciones:

  • Caída moderada: Rayoloma (186.2 g/m2), San Nicolás (148.3 g/m2), Retén (140.8 g/m2), Cashapamba (123 g/m2), Pancún (100.6 g/m2).
  • Caída leve: Cebadas (95.4 g/m2), Vía Oriente (83.3 g/m2), Cebadas 02 (75.8 g/m2), Guamote (73.4 g/m2), (73.0 g/m2), Chauzán 02 (46.3 g/m2), Palmira Dávalos (31.3 g/m2), Utucún 4 Esquinas (29.5 g/m2), San Antonio 02 (25.7 g/m2, desde el 20/09 al 19/10), Palmira (24.8 g/m2), Alausí (20.6 g/m2), Flores (20.6 g/m2), Piscinas de Atillo (12.2 g/m2), Pallatanga (10.3 g/m2), Punto Cero Atillo (10.3 g/m2).
  • Caída muy leve: Juan de Velasco (9.4 g/m2), Chaguarpata (8 g/m2), Colta (6.5 g/m2), Huigra (5,1 g/m2), Chauzán 01 (4.7 g/m2), Cumandá (2.8 g/m2).

Posteriormente, la ceniza recolectada es analizada en el laboratorio del IG-EPN para determinar su contenido, composición y principales características; esto permite obtener información fundamental para una mayor comprensión y evaluación de la amenaza.

Recolección de ceniza y mantenimiento de la red de cenizómetros del volcán Sangay, provincia de Chimborazo
Figura 1. Ubicación de los Cenizómetros del Instituto Geofísico (IG) y de los Observadores Volcánicos (OV) con la carga de ceniza en la zona occidental del volcán Sangay (Fuente: Google Earth Pro).


Los cenizómetros son recipientes especialmente diseñados para la recolección de muestras de caídas de ceniza. Los datos obtenidos a través de esta red permiten a los técnicos llevar un control periódico de la dispersión y el volumen de ceniza que emiten los volcanes. Además, permiten recolectar muestras no contaminadas que se analizan posteriormente en laboratorio para conocer su composición y, en base a esto, evaluar la actividad de los volcanes en erupción y la peligrosidad de la ceniza volcánica emitida.

Recolección de ceniza y mantenimiento de la red de cenizómetros del volcán Sangay, provincia de Chimborazo
Figura 2. Mantenimiento de la red de cenizómetros con contenido muy leve a moderado de ceniza en su interior en varias comunidades de la provincia de Chimborazo, localizadas al occidente del Volcán Sangay por parte del personal del IG-EPN (Fotos: A. Vásconez, M. Encalada y E. Telenchana/IG-EPN).


Por otra parte, los Observadores Volcánicos de varias comunidades de las parroquias Cebadas y Palmira del cantón Guamote también procedieron a realizar el mantenimiento de cenizómetros y entregar sus respectivos filtros (Fig. 3). En ese sentido, a varios Observadores se les explicó cómo realizar el mantenimiento y la forma de compartir la información recolectada y observaciones a través de la aplicación para celulares App_OV.

Recolección de ceniza y mantenimiento de la red de cenizómetros del volcán Sangay, provincia de Chimborazo
Figura 3. Mantenimiento de los cenizómetros con los Observadores Volcánicos de varias comunidades de las Parroquias de Cebadas y Palmira. (Fotos: A. Vásconez, M. Encalada y E. Telenchana/IG-EPN).


El Instituto Geofísico continuará con las campañas de recolección de ceniza y el mantenimiento de la red de cenizómetros del volcán Sangay en la provincia de Chimborazo.

E. Telenchana, A. Vásconez, M. Encalada
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Comunidad

Con el objetivo de fortalecer la vigilancia de los procesos volcánicos y contar con la información necesaria para el entendimiento sobre la geodinámica que presenta la caldera de Potrerillos, el Instituto Geofísico de la Escuela Politécnica Nacional, en compañía de vigías y habitantes del sector de Tufiño en la provincia del Carchi, realizaron una serie de trabajos que culminaron exitosamente con la instalación de una estación GNSS de monitoreo geodésico.

Instalación de una base continua GPS en el sector norte de la Caldera de Potrerillos para la vigilancia de la deformación en la Reserva Ecológica El Ángel (Carchi)
Personal del IG-EPN en conjunto con vigías y habitantes de Tufiño, luego de instalar la nueva estación geodésica TOAL, ubicada en el sector de la Tola Alta, en la parte norte de la caldera de Potrerillos, en las inmediaciones de la Reserva Ecológica “El Ángel”. La infraestructura observada corresponde a los sistemas de alimentación y cajas con equipos, que fueron donados por USAID a través del Programa de Asistencia ante Desastres Volcánicos (VDAP). Nótese en la parte superior izquierda, se encuentra la antena geodésica con forma de disco, sobre un gran afloramiento de roca.


Instalación de una base continua GPS en el sector norte de la Caldera de Potrerillos para la vigilancia de la deformación en la Reserva Ecológica El Ángel (Carchi)
Vigías voluntarios y residentes de Tufiño, junto al personal del IG-EPN durante los trabajos de preparación de los materiales, que serían transportados a pie y con la ayuda de caballos, desde Tufiño hacia el sector de Tola Alta en la Reserva Ecológica El Ángel.


Las actividades se desarrollaron durante la semana del 24 al 28 de octubre, en la cual se cumplieron actividades de búsqueda de sitio, estudio e implementación de enlaces de transmisión, transporte de equipos y materiales, edificación de infraestructura, conexión de dispositivos y sistema de alimentación, configuración de equipos y puesta en marcha de la estación.

Instalación de una base continua GPS en el sector norte de la Caldera de Potrerillos para la vigilancia de la deformación en la Reserva Ecológica El Ángel (Carchi)
Trabajos de perforación y adecuación de la antena geodésica, sobre un afloramiento de roca. La antena geodésica es la encargada de la detección de ondas provenientes de la constelación de satélites GNSS. Las ondas electromagnéticas son amplificadas y enviadas en forma de señales eléctricas hacia un equipo receptor GPS, que se encarga de muestrear y decodificar las señales, calcular la posición y almacenar la información adquirida.


Instalación de una base continua GPS en el sector norte de la Caldera de Potrerillos para la vigilancia de la deformación en la Reserva Ecológica El Ángel (Carchi)
Labores de levantamiento de la infraestructura para los equipos y el sistema de alimentación por energía solar.


Los datos generados por el equipo GPS permiten conocer diariamente la posición exacta de la antena con precisión milimétrica. En caso de existir deformación en Potrerillos, los datos brindarán información sobre las magnitudes y direcciones de los desplazamientos superficiales detectados, en base a los que se puede construir modelos y así determinar la ubicación y geometría de la fuente de deformación.

El Instituto Geofísico desea manifestar su sincero agradecimiento por todo el apoyo recibido de parte de la Agencia Internacional para el Desarrollo de los Estados Unidos (USAID) a través del Programa de Asistencia ante Desastres Volcánicos (VDAP), que entregó en donación toda la infraestructura, así como los dispositivos y equipos que fueron instalados en esta nueva estación permanente GPS. De la misma manera, agradecemos al Instituto Panamericano de Geografía e Historia (IPGH), que por medio del proyecto: “Implementación de métodos gravimétricos y sísmicos para el estudio de calderas volcánicas. Caso de estudio: Calderas fronterizas de la zona de Potrerillos/Chiles, Ecuador-Colombia” financió los trabajos y gastos relacionados, que hicieron posible el cumplimiento de los objetivos propuestos. También deseamos reconocer la ardua labor de los vigías y pobladores de Tufiño que colaboraron en los trabajos de transporte y levantamiento de la base de monitoreo.

M. Yépez, R. Toapanta, C. Macías,P. Mothes
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Comunidad

En los días 26 y 27 de octubre, personal del IG-EPN efectuó dos sobrevuelos de reconocimiento alrededor del volcán Cotopaxi. Estos sobrevuelos se realizaron gracias al apoyo de las Fuerzas Armadas, la Presidencia, el Ministerio de Defensa, la Secretaría de Comunicación de la Presidencia y del Servicio Nacional de Gestión de Riesgos y Emergencias (Foto 1).

Sobrevuelo volcán Cotopaxi: Medidas térmicas y de gases volcánicos
Foto 1.- Personal del IGEPN, las Fuerzas Armadas y Ministerio de Medio Ambiente que participó en el sobrevuelo al volcán Cotopaxi (27 de octubre 2022, FFAA).


Durante estos sobrevuelos se realizó imágenes térmicas usando una cámara infrarroja portátil, medidas de CO2, SO2 y H2S usando un equipo MultiGAS y observaciones mediante cámaras visuales convencionales.

Debido a las condiciones climáticas se pudo hacer imágenes térmicas únicamente la mañana de hoy 27 de octubre. Gracias a éstas, se pudo medir la temperatura aparente de la emisión de gases que alcanzó un valor > 50 °C (Foto 2). Además, se constató que las temperaturas de la zona del cráter se mantienen en niveles similares a los medidos en ocasiones anteriores.

Sobrevuelo volcán Cotopaxi: Medidas térmicas y de gases volcánicos
Foto 2.- Imagen térmica del cráter del volcán Cotopaxi (27 de octubre 2022, S. Vallejo).


El equipo multiGAS permitió medir las concentraciones de CO2, SO2 y H2S en la pluma de gas volcánico (Foto 3). Las razones SO2/H2S están alrededor de 4, mientras que las de CO2/SO2 están entre 2 y 3, siendo ligeramente mayores a las obtenidas en 2015 durante la última erupción del volcán. Estos valores indican un origen principalmente magmático para el gas emitido por el volcán Cotopaxi.

Sobrevuelo volcán Cotopaxi: Medidas térmicas y de gases volcánicos
Foto 3.- Pluma de gases volcánicos emitida desde el cráter del volcán Cotopaxi (27 de octubre, S. Hidalgo).


La emisión de vapor de agua y otros gases volcánicos como el CO2, SO2 y H2S, se visualiza continuamente en los últimos días indicando un incremento con respecto a lo observado en los meses pasados.

S. Hidalgo, M. Almeida, S. Vallejo, D. Sierra, M. Naranjo
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Comunidad

El día 24 de octubre del presente año, un grupo de técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IGEPN) realizaron un recorrido por las quebradas del flanco nororiental del volcán Cotopaxi.

El objetivo de este trabajo fue realizar una inspección y verificación en los drenajes nororientales del volcán. Se verificó que no existieron evidencias de lahares secundarios que hayan descendido hasta la zona baja del volcán por estas quebradas o hacia las afluentes del río Pita que se encuentra en esta dirección.

Campaña de vigilancia de lahares en las quebradas ubicadas en el flanco nororiental del volcán Cotopaxi
Figura 1: Quebrada de Jatabamba al nororiente del volcán Cotopaxi, sin evidencias de descenso de lahares. (Fotografía: J. Salgado, IGEPN).


Durante el recorrido también se verificó el correcto funcionamiento de uno de los puntos de monitoreo instalados en este flanco del volcán. La estación visitada fue VC1, una de las primeras estaciones de vigilancia instaladas en el volcán Cotopaxi.

Este punto de monitoreo multiparamétrico cuenta con equipos de vigilancia sísmica, de deformación, de gases y de detección de lahares.

Un grupo de periodistas acompañaron a los técnicos del IGEPN y fueron partícipes de estos trabajos. Adicionalmente, se brindó explicaciones acerca de la vigilancia del volcán y de los equipos con los que cuenta la red de monitoreo.

Campaña de vigilancia de lahares en las quebradas ubicadas en el flanco nororiental del volcán Cotopaxi
Figura 2: Explicaciones de los técnicos a los miembros de la prensa, acerca de la vigilancia del volcán Cotopaxi. (Fotografías: M. Córdova, IGEPN).


D. García, M. Córdova, J. Salgado
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Comunidad