Reciente incremento de actividad
26 de septiembre de 2015
En el Informe Especial N.- 14 emitido el 21 de septiembre de este año, se indicó que “durante las últimas dos semanas se ha observado un incremento en la actividad superficial en el volcán Tungurahua, caracterizada por el aumento en la intensidad de las emisiones de gas y ceniza. El día 19 de septiembre se registró una explosión cuya columna de gas y ceniza alcanzó 2 km sobre el nivel cumbre (snc). Durante la noche del 19 de septiembre se observó una leve incandescencia en el cráter. La deformación en la estación inclinométrica RETU ha empezado una deflación acelerada en los últimos dos días posiblemente relacionada al ascenso de magma en el conducto. Estos cambios indican posiblemente nuevos episodios eruptivos en los próximos días a semanas”.
Durante la última semana la actividad interna del volcán Tungurahua ha venido experimentado un incremento constante de su actividad, el número de sismos LP (circulación de fluidos) se ha incrementado significativamente y en las últimas horas se presenta como un enjambre de estos eventos. Alrededor de las 20:21 horas de esta noche se registró un evento LP, luego del cual se presenta un tremor sísmico el mismo que se registra en las estaciones del volcán y que se mantiene hasta el cierre de este informe y aparentemente se va incrementando.
Acompañando a esa actividad sísmica, en superficie, se observa una importante emisión de gases con una carga importante de ceniza, mientras ocurre esta emisión se emiten bloques balísticos incandescentes, los mismo que ruedan por el flanco occidental y nor-occidental, alcanzando hasta unos 500 m pendiente abajo. Los vigías del volcán informan que escuchan bramidos y rodar de bloques conjuntamente con esta actividad.
Sobre el desarrollo posterior de esta actividad continuaremos informando tanto a las autoridades pertinentes, así como a las comunidades en las zonas de riesgo del volcán.
PR, ET
Instituto Geofísico
Escuela Politécnica Nacional
Gracias al apoyo logístico de una aeronave por parte del MICS, se realizó un sobrevuelo el día 22 de septiembre desde el aeropuerto de Tababela en dirección al volcán Cotopaxi, en un avión Twin Otter de la FAE (452) siguiendo la ruta que muestra la Figura 1.
Observaciones visuales
La actividad superficial del volcán durante el sobrevuelo estuvo caracterizada por una emisión poco energética de gases con un bajo o nulo contenido de ceniza emitida desde el cráter y que alcanzaba una altura aproximada de 500 m sobre este y luego desplazándose en dirección hacia el occidente, Figura 2. La nubosidad presente en los flancos este, sur y norte impidieron hacer observaciones directas de los campos fumarólicos existentes en las partes altas de los mismos. Sin embargo para el flanco occidental se confirma la actividad fumarólica del campo ubicado en la parte alta del mismo, presentando una emisión intermitente poco energética; la misma que ya ha sido observada desde el año 2002, Figura 3.
Con respecto a la afectación del glaciar en los diferentes flancos se constató una vez más el continuo fracturamiento tanto en las partes altas (Fig. 4) como en las lenguas terminales de los glaciares de los flancos N, NW y SW del volcán (Fig. 5); además se observaron varios derrumbes al interior y exterior del cráter,. Esta afectación se relaciona muy probablemente con los cambios en el albedo de los glaciares, por la presencia de la ceniza recientemente depositada y que estaría calentándolos, así como también por una mayor fusión basal de los glaciares debido al arribo de fluidos calientes a la superficie del edificio volcánico, dada la actividad actual. Como consecuencia de lo mencionado se continúa observando delgados drenajes de agua que bajan de varios frentes del glaciar y que cuyos volúmenes podrían alimentar la formación de flujos de lodo secundarios.
Durante el sobrevuelo, nuevamente fue posible observar la presencia de una mayor cantidad de sitios con depósitos de color amarillento-verdoso, posiblemente sulfurosos, y que se deben al incremento de la actividad fumarólica en el volcán. Estos fueron más evidentes en los flancos SE, E, bajo la cumbre S, en el anillo de arena interno y sobre el glaciar circular (Fig. 6).
Durante este vuelo fue posible observar parcialmente el cráter interno, varias zonas que no estaban cubiertas por la emisión; nuevamente fue notorio que el glaciar circular balo la cumbre N ha sido muy afectado por la actividad anterior del volcán y en una buena parte este ha desaparecido.
Monitoreo Térmico
La persistente nubosidad en varios flancos del volcán impidió obtener imágenes térmicas de todas las anomalías que regularmente se analizan. Sin embargo se determinó que el mayor valor de temperatura máxima aparente (TMA) fue de 35,3 °C y correspondió al campo fumarólico del flanco oriental, Figura 7. La emisión continua no permitió realizar observaciones ni medidas del cráter interno del volcán.
Los valores de TMA medidos en las nuevas fumarolas al interior del cráter variaron entre 27 y 34 °C, presentando una disminución con respecto al sobrevuelo de la semana anterior; este resultado puede ser un reflejo de la emisión de gases presente todo el tiempo en el cráter.
Con respecto a las medidas registradas para el flanco sur, estas variaron entre 28 y 33°C, presentando igualmente una disminución con respecto a la semana anterior. Estos valores pueden ser un reflejo de la nubosidad casi permanente sobre los flancos.
Los valores medidos de TMA de las diferentes anomalías térmicas identificadas y medidas en el Cotopaxi para el presente sobrevuelo se encuentran en la Tabla 1, dichos valores se encuentran dentro del rango de temperaturas medidas entre los años 2002 y 2015.
SV, PR, MA
Instituto Geofísico
Escuela Politécnica Nacional
Desde el 17 de julio de 2015 se creó una red de recolectores de ceniza (Fig. 1), llamados cenizómetros caseros (Bernard 2013), en la zona más afectada por las caídas de ceniza asociadas a la actividad del volcán Cotopaxi. Los cenizómetros son construidos con material de reciclaje y también gracias a una donación de botellas por parte de la empresa The Tesalia Springs Company SA.
Hasta el momento se han instalados 36 cenizómetros sobre una superficie de 600 km² (Fig. 2), de los cuales 5 han sido instalados por el personal de Aglomerados Cotopaxi SA y el resto por el personal del Instituto Geofísico. En caso de una dispersión más amplia de la ceniza se cuenta con cenizómetros en zonas más alejadas (Quito, Latacunga, Conocoto, Areopuerto Mariscal Sucre, Manta…).
Estos cenizómetros permiten medir o calcular diferentes parámetros como el espesor de ceniza acumulada (desde 0,3 hasta 20 mm), la carga de ceniza (desde 1 g/m²), y la densidad de la ceniza (en kg/m³). También permiten colectar muestras sin contaminación para realizar diferentes tipos de análisis:
Esta información permite evaluar la actividad del volcán Cotopaxi y la afectación de la ceniza en las zonas aledañas al volcán (Fig. 3). La información principal de este trabajo es publicada en las actualizaciones de la actividad eruptiva del Cotopaxi.
Queremos agradecer todas las personas que han participado en la creación de la red de cenizómetros del Cotopaxi, en particular The Tesalia Springs Company SA, Aglomerados Cotopaxi SA, el personal del Parque Nacional Cotopaxi y las personas que nos autorizaron en instalar cenizómetros en sus terrenos.
BB, AP, ME, JG, MC, SA, JC, EG, ET, PE
Instituto Geofísico
Escuela Politécnica Nacional
Aumento del número de sismos VT y posible movimiento del magma o de la fuente de presión en profundidad.
Resumen
Durante las últimas semanas se ha observado una disminución de la actividad superficial en el volcán Cotopaxi. Sin embargo, el número de eventos volcano-tectónicos (rupturas dentro del volcán) registrado sigue aumentando desde el 10 de septiembre y está posiblemente asociado al movimiento del magma o a un aumento de la presión en profundidad. Se registraron también pequeños cambios en la deformación del volcán. Durante el último sobrevuelo se pudo observar que los glaciares están siendo afectados por la actividad eruptiva. El 20 de septiembre se registró un pequeño lahar en la quebrada Agualongo (flanco occidental) que se detuvo al nivel de la carretera en el Parque Nacional Cotopaxi. Este evento fue probablemente asociado al deshielo del glaciar ya que no se registró lluvias en la zona este día. En base a la información presentada podrían ocurrir nuevos pulsos de actividad eruptiva en los próximos días a semanas.
Sismicidad
Como se indicó en la precedente actualización de la actividad del volcán Cotopaxi, en las últimas semanas se ha registrado un cambio en las características de la sismicidad con: 1) una disminución del número de eventos LP (Largo Periodo, asociados a movimientos de fluidos) y del tremor de emisión; 2) un aumento rápido del número de eventos VT (Volcano-Tectónico, asociados a rupturas dentro del edificio volcánico) de pequeña magnitud. Al momento, la mayoría de los eventos se ubican debajo del cráter a menos de 12 km de profundidad (Fig. 1). Hasta la hora de publicación de este informe el número máximo de sismos VT, se registró el 21 de septiembre con 221 en 24 horas. Adicionalmente se han detectado pequeños eventos sísmicos y señales de infrasonido en las noches del 17 y del 21 de septiembre que podrían corresponder a pequeñas explosiones. Sin embargo no hay confirmación visual de estos eventos.
Deformación
Desde el 2 hasta el 16 de septiembre se ha observado una variación importante en los valores del inclinómetro de VC1 (flanco Nororiental), con una disminución de 80 μrad en el eje radial y un aumento de 60 μrad en el eje tangencial. Estas tendencias coincidieron con el aumento del número de VT registrados en el mismo período de tiempo, tal como se lo puede ver en la figura 2. Sin embargo, desde el 17 de septiembre la dirección de las tendencias cambiaron en ambos ejes, es decir ahora se observa ascenso en el eje radial y descenso en el eje tangencial. En el inclinómetro ubicado en refugio (flanco N) no se observan cambios importantes.
Emisión del SO2
Los valores de flujo de SO2 obtenidos por la red permanente de DOAS sugieren disminución de las emisiones con respecto a los valores observados inmediatamente después de las explosiones del 14 de agosto (Fig. 3). Los valores obtenidos del 8 al 15 de septiembre se mantuvieron constantes (entre 2000 y 3000 ton/día). Sin embargo desde el 15 de septiembre los valores obtenidos por la red permanente han disminuido a aproximadamente 500-1000 ton/día. Otros métodos como el DOAS móvil y los datos satelitales indican que las emisiones de SO2 siguen una tendencia decreciente similar. Los valores actuales están todavía por encima del nivel de base de la desgasificación del volcán Cotopaxi.
Dispersión y caída de ceniza
En base a las alertas emitidas por la Washington VAAC se puede observar que durante el periodo del 11 al 18/09/2015, las nubes de ceniza asociadas a la actividad del volcán Cotopaxi afectaron una gran parte del Ecuador (Fig. 4). La altura de las nubes de ceniza alcanzó un máximo de 2.3 km sobre el nivel del cráter (snc) el 15 y el 17 de septiembre (2.9 km snc la semana anterior). Se puede observar una altura casi constante de las nubes de ceniza durante la semana. La velocidad de las nubes de ceniza varió entre 2.6 y 12.9 m/s. La dirección predominante del viento ha sido hacia el Occidente (entre SW y NW). Las nubes de ceniza alcanzaron la costa hacia el Occidente, Machachi al Norte y Latacunga al Sur. Sin embargo se observa también que la dirección predominante de las nubes de ceniza ha sido hacia el Occidente-Noroccidente alcanzando hasta 617 km de longitud el 14 de septiembre.
El trabajo de campo realizado sobre el depósito de la caída de ceniza asociado a la erupción del volcán Cotopaxi desde el 11 hasta el 18 de septiembre de 2015, permitió identificar que las zonas más afectadas durante este periodo se encuentran al Occidente y Noroccidente del volcán con una intensidad máxima en el Parque Nacional Cotopaxi (Fig. 5). La estimación de la masa y del volumen total emitido durante este periodo es de ~2.74 × 107 kg (~21,000 m3) lo que permite calificarlo con un índice de explosividad volcánica VEI 1. Desde el inicio de la actividad se acumuló ~9.36 × 108 kg (~763,000 m3) de ceniza hasta el viernes 18 de septiembre de 2015. Vale indicar que la actividad durante la última semana ha disminuido respecto a la semana anterior (~62,000 m³).
El análisis granulométrico de las últimas muestras de ceniza sigue indicando una proporción muy grande de ceniza extremadamente fina (entre 50 y 80 % menor a 63 μm). El análisis de componentes realizado con lupa binocular sigue indicando una disminución del aporte del sistema hidrotermal o del conducto (líticos con pirita, escorias grises con vesículas rellenas de material hidrotermal, cuarzo hidrotermal, líticos grises) y un posible aumento del aporte de magma fresco (cristales libres, partículas vítreas con baja vesicularidad y alto contenido de microlitos).
Observaciones visuales
Durante los últimos días la actividad superficial del volcán Cotopaxi ha sido caracterizada por emisiones de gas con carga baja a mínima de ceniza alcanzando entre 1000 y 2500 m sobre el nivel del cráter y dirigidas por los vientos hacia el Occidente (Fig. 6).
Monitoreo térmico
Durante el sobrevuelo realizado al volcán Cotopaxi en la mañana del 22 de septiembre las condiciones climáticas fueron mayormente buenas, permitiendo realizar observaciones de su actividad superficial y obtener medidas de temperatura de varios sectores. Se identificó una emisión de vapor de agua que alcanzaba ~1 km sobre el nivel de la cumbre con una dirección al Occidente–Noroccidente y baja actividad fumarólica en las paredes internas del cráter así como de las partes altas del flanco occidental. El valor de temperatura máxima aparente (TMA) medido durante el sobrevuelo fue de 35,3 °C y correspondió al campo fumarólico del flanco oriental (Fig. 7). Las TMA de los otros campos fumarólicos variaron entre 19 y 34°C. La emisión continua no permitió realizar observaciones ni medidas del cráter interno del volcán.
Se observó la presencia de nuevas fracturas tanto en las partes altas y bajas del glaciar, así como pequeños derrumbes hacia el interior y exterior del cráter. Se continúa observando la presencia de agua y humedad entre el contacto glaciar-roca y la presencia de drenajes de agua que pudieran alimentan la formación de lahares secundarios. La presencia de nuevas anomalías térmicas así como el deshielo paulatino del glaciar sugieren el progresivo calentamiento del edificio como resultado del presente período eruptivo.
Lahares
El 20 de septiembre, aproximadamente a las 15h10, se detectó un pequeño lahar (flujo de lodo y escombros volcánicos) en una quebrada del flanco occidental del volcán (Fig. 8), afluente de la quebrada Agualongo. El lahar se detuvo al llegar a la carretera del Parque Nacional Cotopaxi, rellenando los tubos de desagüé. Su frente tenía un espesor de cerca de 1.2 metros (Fig. 9). El evento duró aproximadamente 40 minutos. Este lahar secundario está posiblemente asociado a un deshielo del glaciar ya que no se registró lluvia en la zona este día.
Interpretación
Los datos de monitoreo obtenidos durante la última semana confirman la interpretación realizada en el último informe siendo ellos: 1) agotamiento de la energía de la intrusión magmática que provocó la actividad superficial registrada y observada hasta el momento; 2) posible movilización de magma y aumento de la presión en profundidad. De llegar a zonas más superficiales este cuerpo magmático podría provocar un aumento de la actividad eruptiva, particularmente la ocurrencia de otra fase de explosiones que anuncian la llegada a la superficie del nuevo magma, en menor o mayor volumen.
Escenarios:
Se plantean como posibles los siguientes escenarios para los próximos días a semanas (en orden del más probable al menos probable), los cuales contemplan la ocurrencia de ascensos de volúmenes de magma desde la cámara magmática hacia el reservorio;
Estos escenarios pueden ser cambiados de acuerdo a la evolución de la actividad del volcán.|
BB, SH, SA, SV, SA, MR, CB
Instituto Geofísico
Escuela Politécnica Nacional
Como parte del monitoreo de los volcanes Chiles y Cerro Negro personal del Instituto Geofísico (IGEPN), entre el 16 y 18 de septiembre de 2015, realizó el muestreo de aguas y análisis de los parámetros de 3 fuentes termales: Potrerillos, El Artesón y Aguas Hediondas (Figura 1) y en Lagunas Verdes.
Adicionalmente en Aguas Hediondas se realiza el muestreo y toma del gas que sale en estas fuentes termales.
Durante los últimos meses, en las mediciones realizadas por parte del IGEPN no se han registrado cambios en las temperaturas de las fuentes medidas en la zona.
Desde el sector de Potrerillos se realizaron observaciones al volcán Cerro Negro y Chiles, en donde se pudo observar en el volcán Chiles deslizamientos en la parte alta (Foto 4), lo cual fue reportado por personal que labora en la carretera del sector como sonidos de rodamientos de rocas.
PE/DS/ET
Instituto Geofísico
Escuela Politécnica Nacional
Reciente incremento de actividad
Resumen
Durante las últimas dos semanas se ha observado un incremento en la actividad superficial en el volcán Tungurahua, caracterizada por el aumento en la intensidad de las emisiones de gas y ceniza. El día 19 de septiembre se registró una explosión cuya columna de gas y ceniza alcanzó 2 km sobre el nivel cumbre (snc). Durante la noche del 19 de septiembre se observó una leve incandescencia en el cráter. La deformación en la estación inclinométrica RETU ha empezado una deflación acelerada en los últimos dos días posiblemente relacionada al ascenso de magma en el conducto. Estos cambios indican posiblemente nuevos episodios eruptivos en los próximos días a semanas.
Sismicidad
El 19 de septiembre a las 12h35 TL (Fig. 1) se produjo un evento LP grande seguido de un episodio de tremor de emisión que duró 2 horas. A las 18h04 (TL) se registró una explosión en la red sísmica y acústica (Fig. 2).
Deformación
En el inclinómetro de Retu, ubidado en el flanco Norte del volcán a 3900 m de altura, se observa deflación en los ejes radial y tangencial, con una variación de 94 y 45 microradianes respectivamente (Fig. 3). La tasa de deflación en el eje radial tiene un valor de 40 μrad/día en el eje radial desde el 19 de septiembre. En ocasiones anteriores (i.e. octubre 2013 y febrero 2014) se registraron también valores altos de la tasa de deflación antes de erupciones.
Dispersión y caída de ceniza
Durante las últimas semanas se han observado varias nubes de ceniza asociadas a la actividad del volcán Tungurahua. Estas han afectado principalmente el sector occidental (desde SW a NW), generando caídas de ceniza en las zonas aledañas al volcán (Fig. 4). El 19 de septiembre se reportó una leve caída de ceniza de color negro en las comunidades de Bilbao, Choglontus, Chontapamba, Motilones y Pillate, ubicadas al Occidente del volcán.
Emisión del SO2
En los últimos 2 días los flujos de SO2 fluctuaron entre 142 y 1153 ton/día (para el 18 y 19 respectivamente), lo que sugiere que las emisiones de SO2 son bajas a moderadas (Fig. 5).
Observaciones Visuales
En los últimos días se han observado débiles emisiones de gas que no suben más de 500 m sobre el nivel del cráter (snc) (Fig. 6). El 19 de septiembre, a las 13h14 (TL) se pudo observar una emisión más energética con contenido moderado a alto de ceniza que alcanzó 2 km snc y fue dirigida hacia el Occidente (Fig. 7).
Adicionalmente, a las 18h04 (TL) se registró una explosión (Fig. 8). La columna alcanzó más de 2 km de altura sobre el nivel del cráter. Se recibió reportes desde Pondoa y Runtún de un cañonazo y ruidos similares al rodamiento de rocas asociados a este evento.
Durante la noche se pudo observar incandescencia a nivel del cráter junto a una emisión principalmente de gas que alcanzó los 300 m snc dirigida hacia Occidente-noroccidente (Fig. 9).
Monitoreo Térmico
Desde la cámara térmica ubicada en el sector noroccidental del volcán, en la parte alta de la Quebrada Mandur, se observa la presencia de fumarolas entre el flanco noroccidental y el borde del cráter externo, así como una emisión continua de baja energía (Fig. 10).
Interpretación
La deformación registrada en los últimos días está posiblemente relacionada con el ascenso de magma en el conducto y podría ser premonitor de una nueva fase eruptiva. La presencia de actividad superficial en las últimas semanas y la observación de incandescencia en el cráter indica un sistema parcialmente abierto.
Escenarios
En base a las observaciones realizadas, y tomando en cuenta la historia del volcán, se plantean los siguientes escenarios posibles para un periodo de los próximos días y pocas semanas. Los escenarios están ordenados desde el más probable al menos probable:
1. Una evolución de la actividad hacia episodios de tremor de emisión más frecuentes y/o episodios de explosividad moderada, con la consecuente generación de ceniza y por ende caídas de ceniza en las zonas proximales al volcán.
2. Un incremento rápido y sostenido de la actividad hacía episodios de mayor explosividad con la potencial generación de flujos piroclásticos de mediano alcance.
3. Un paulatino decremento de la actividad con emisiones de ceniza y pequeñas explosiones aisladas sin mayor afectación para la población.
PE, PM, MC, CB, SH, MR, BB
Instituto Geofísico
Escuela Politécnica Nacional
Disminución de la actividad superficial y evidencias de nuevas intrusiones magmáticas y aumento de presiones internas
Resumen
Durante las últimas dos semanas se ha observado una disminución de la actividad superficial en el volcán Cotopaxi, caracterizada por un debilitamiento de la intensidad de las emisiones de gas y ceniza y asociada a una reducción del tremor de emisión. Sin embargo desde el 10 de septiembre se ha registrado un aumento en el número de eventos volcano-tectónicos (rupturas dentro del volcán) y de la deformación del edificio volcánico posiblemente relacionados a una nueva intrusión de magma en profundidad o a un aumento de la presión en el reservorio magmático. Adicionalmente, desde dos semanas atrás se observa un posible aumento del aporte de magma fresco en la ceniza volcánica. Durante el último sobrevuelo se han registrados nuevas anomalías térmicas en los flancos superiores del volcán. Estos cambios podrían ser seguidos por nuevos pulsos de actividad eruptiva en los próximos días a semanas.
Sismicidad
Desde el 10 de Septiembre se registra un incremento en el número de eventos de tipo volcano-tectónico (VT, asociados a rupturas dentro del volcán) con 43 sismos durante este día y posteriormente se ha registrado un promedio de 54 VT diarios (Fig. 1). Con el aumento en el número de sismos VT, el tremor que estaba relacionado con emisiones de ceniza disminuyó.
Estos sismos VT fueron localizados principalmente entre 9 y 12 km bajo la cumbre del volcán y alrededor de 4 km bajo la cumbre pero en menor cantidad (Fig. 2). Algunos de estos eventos VT también se han registrado al Norte del volcán por el sector de PITA (zona distal) a profundidades de 12 km respecto a la cumbre. Las magnitudes de estos eventos VT son menores a 2.0 en la escala de Richter, sin embargo, dichos valores representan una energía considerable en un contexto volcánico.
Debido a que los eventos VT se distribuyen a lo largo del posible conducto volcánico, así como, en las regiones de menor esfuerzo alrededor del volcán (e.j. sector de Pita), se supone que el magma o los gases están ejerciendo presiones en esta zona.
Deformación
La red de inclinometría muestra un cambio en el patrón de deformación en el flanco nororiental en los últimos 10 días (Fig. 3). Este cambio es simultáneo con el aumento del número de eventos VT indicando un aumento de presión en edificio volcánico.
Dispersión y caída de ceniza
En base a las alertas emitidas por la Washington VAAC se puede observar que durante el periodo 04-11/09/2015, las nubes de ceniza asociadas a la actividad del volcán Cotopaxi afectaron una gran parte del Ecuador (Fig. 4). La altura de las nubes de ceniza alcanzó un máximo de 2.9 km sobre el nivel del cráter (snc) el 4-5 de septiembre (6.0 km snc la semana anterior). Se puede observar una disminución de la altura de las nubes de ceniza asociadas a una disminución de la intensidad de la actividad eruptiva. La velocidad de las nubes de ceniza varió entre 3.9 y 14.1 m/s. La dirección predominante del viento ha sido hacia el Occidente (entre SW y W). Las nubes de ceniza alcanzaron la costa hacia el Occidente, Machachi al Norte y Latacunga al Sur, con una dirección predominante de las nubes de ceniza hacia el Occidente alcanzando hasta 465 km de longitud el 9 de septiembre.
Las zonas más afectadas por las caídas de ceniza entre el 4 y el 11 de septiembre se encuentran al Occidente del volcán con una intensidad máxima en el Parque Nacional Cotopaxi y El Chasqui (Fig. 5). La estimación de la masa y del volumen total emitido durante este periodo es de ~7.64 × 107 kg (~62,000 m3) lo que permite calificarlo con un índice de explosividad volcánica VEI 1. Desde el inicio de la actividad se acumuló ~9.09 × 108 kg (~742,000 m3) de ceniza hasta el viernes 11 de septiembre de 2015. Vale indicar que la actividad durante la última semana ha disminuido respecto a la semana anterior (~122,000 m³).
El análisis granulométrico de las muestras de ceniza indica una proporción muy importante de ceniza extremadamente fina (entre 30 y 75 % menor a 63 μm). Aparte del material recuperado durante el primer día de la erupción (14 de agosto) que tenía una distribución granulométrica un poco más gruesa, las demás muestras no indican un cambio y presentan una granulometría principalmente muy fina a extremadamente fina. El análisis de componentes realizado con lupa binocular y microscopio electrónico de barrido (MEB) muestra claramente una evolución de la ceniza con una disminución del aporte del sistema hidrotermal (líticos con pirita, escorias grises con vesículas rellenas de material hidrotermal, cuarzo hidrotermal) y un posible aumento del aporte de magma fresco (cristales libres, partículas vítreas con baja vesicularidad y alto contenido de microlitos), en particular desde el 28 de agosto (Fig. 6).
Emisión del SO2
Desde el 10 de septiembre los valores de SO2 se han mantenido alrededor de 2000 ton/día. Estos valores son similares a los registrados previo a las explosiones del 14 de Agosto (Fig. 7). Sin embargo, la emisión de SO2 ha pasado de continua a pulsátil, registrándose valores más bajos el 13 de septiembre. Esto podría corresponder a una disminución del SO2 en el magma, es decir a un empobrecimiento en este gas en el sistema; o a una disminución de la permeabilidad del conducto, lo que impediría el desfogue continuo de los gases.
Observaciones Visuales
En los últimos días se han observado emisiones de gas con bajo contenido de ceniza que no suben más de 500 m sobre el nivel del cráter (snc) (Fig. 8A). El 15 de septiembre, a las 13h00 (TL) se pudo observar una emisión un poco más energética con contenido moderado de ceniza que alcanzó 1.5 km snc y fue dirigida hacia el Occidente. Un grupo del Instituto Geofísico realizó una misión entre los días 12 y 13 de septiembre para realizar varias tareas de observación. Gracias a las buenas condiciones climáticas del sector se pudieron observar emisiones de vapor poco energéticas con bajo contenido de ceniza con una dirección preferencial hacia el Suroccidente alcanzando una altura máxima de 1 km snc. En las partes altas del flanco occidental se observó actividad fumarólica mientras que en Yanasacha esta actividad no fue evidente. No se registraron ruidos asociados a la emisión de gases y ceniza. Durante la noche no se observó incandescencia (Fig. 8B).
Monitoreo térmico
Se adquirieron imágenes térmicas del sector Noroccidental del volcán. Se observaron las anomalías relacionadas con el sector de Yanasacha y la emisión continua que reflejaron temperaturas máximas aparentes (TMA) de 21.7 y 10.1 °C respectivamente (Fig. 9). Estos valores se encuentran dentro de los rangos medidos entre los años 2002 y 2014.
Durante el sobrevuelo realizado el 15 de septiembre, se observó la presencia de nuevos campos fumarólicos en el cráter interno bajo la cumbre y en su sector sur oriental (Fig. 10). Las temperaturas más altas corresponden a los campos fumarólicos del cráter interno y de sector superior del flanco oriental alcanzando los 43,1°C. Se determinó que el área de los campos fumarólicos de la parte superior del edificio va aumentando progresivamente y además fue se identificaron nuevos anomalías en los flancos sur oriental y sur occidental.
Interpretación
En base a los datos obtenidos se evidencia una disminución de la actividad superficial en las últimas dos semanas caracterizada por una disminución de la intensidad de las emisiones de gas y ceniza, y asociada a la disminución del tremor de emisión. Esta disminución puede interpretarse por el agotamiento de la energía de la intrusión magmática que provocó esta actividad registrada y observada hasta el momento. Sin embargo el aumento importante del número de sismos volcano-tectónico y su ubicación (VT distales y VT profundos), y la deformación incipiente asociada del edificio volcánico indica una posible realimentación del reservorio magmático localizado entre 3 y 7 km de profundidad bajo el cráter o un aumento de la presión interna. De llegar a zona más superficiales este cuerpo magmático podría provocar un aumento de la actividad eruptiva, particularmente la ocurrencia de otra fase de explosiones que anuncian la llegada a la superficie del nuevo magma, en menor o mayor volumen.
Escenarios:
Se plantean como posibles los siguientes escenarios para los próximos días a semanas, los cuales contemplan la ocurrencia de ascensos de volúmenes de magma desde la cámara magmática hacia el reservorio:
Estos escenarios pueden ser cambiados de acuerdo a la evolución de la actividad del volcán.
BB, PM, GP, IM, AA, GV, SH, SV, MR
Instituto Geofísico
Escuela Politécnica Nacional
Disminución de la energía sísmica y el tamaño de emisiones de las cenizas. Posibilidad de nuevos pulsos de actividad.
Resumen:
Desde el 5 de septiembre (informe N.- 14) se ha registrado un descenso en los niveles de energía sísmica y en el tamaño y contenido de ceniza de las columnas de emisión del volcán Cotopaxi. Se destaca la ocurrencia de un sismo de magnitud 3.4 a 4.5 km bajo el cráter del volcán y el progresivo incremento de material juvenil en la ceniza del volcán, el cual tiene como fuente la fragmentación de magma en el interior del conducto. Esta disminución de la actividad puede ser temporal y podría ser seguida por nuevos pulsos de actividad eruptiva.
Sismicidad:
Desde el Informe Especial N.- 14 emitido el 05 de septiembre, el volcán Cotopaxi ha continuado mostrando un descenso temporal en los niveles de energía sísmica liberada (Fig. 1). Esta disminución está relacionada a una reducción en las amplitudes del tremor de emisión, las mismas que entre el 22 y el 29 de agosto de este año alcanzaron valores muy altos como se aprecia en la figura 1.
En los sismogramas se observa que los episodios de tremor son seguidos por periodos de algunas horas de relativo silencio sísmico (Fig. 2). En estos periodos se observan algunos sismos locales, de los cuales se debe destacar el sismo de las 11h58 (tiempo local) del 7 de septiembre ocurrido a 4.5 km de profundidad bajo la cumbre. Este evento tuvo una magnitud de 3.4, constituye uno de los sismos de mayor magnitud detectado en el volcán en las últimas semanas.
Entre el 1 y 8 de septiembre se ha registrado un número importante de eventos sísmicos (Tabla 1). Sus hipocentros están localizados entre 2 a 11 km bajo la cumbre (Fig. 3). Muchos de estos eventos son tremores, sismos tipo VT (fracturamiento de rocas), LP y VLP (movimiento de fluidos en el interior del volcán).
Caída de Cenizas:
En base de mediciones realizados por personal del IGEPN de la distribución, espesores y pesos de las cenizas que han caído en los alrededores del volcán, se puede destacar que durante la semana pasada, del 28 Agosto al 04 de Septiembre del 2015, la zona más afectada fue la del Parque Nacional Cotopaxi, donde se midieron hasta 2 kilogramos de acumulación de ceniza por metro cuadrado durante este periodo. Esta zona comprende 9 km2 de superficie. Mientras la zona con caídas de hasta 200 g/m2 mide aproximadamente 150 km2 (Fig. 4).
En base a los datos obtenidos se estima que han caído 122,000 m3 de ceniza, calificando que la erupción tiene un nivel de explosividad VEI = 1 (VEI son las siglas del Índice de Explosividad Volcánica, el cual es un referente del tamaño de las erupciones). Este volumen es alrededor de la tercera parte de lo que cayó en la semana pasada (410,000 m3). Desde el 14 de agosto del presente, cuando empezó la expulsión del material piroclástico, se ha acumulado en el terreno unos 680,000 m3 de ceniza. Del análisis de las muestras de ceniza se ha encontrado un aumento en la proporción de fragmentos juveniles (provenientes de magma fresco) en la ceniza.
Emisión del SO2:
Los valores de SO2 han bajado en una manera importante. En la imagen satelital se observa una pequeña nube de este gas magmático. El tamaño observado en los días anteriores fue 4 a 5 veces mayor en su cobertura (Fig. 5).
Mediciones termales: El día 9 de septiembre, un grupo de técnicos del IG, con el apoyo logístico del MICS, realizaron un sobrevuelo al volcán en una aeronave Twin Otter de la FAE. Las condiciones de nubosidad durante el vuelo fueron desfavorables, la mayor parte del tiempo el volcán permaneció entre nubes. Sin embargo se pudo realizar mediciones de la columna de emisión, la cual presentaba un contenido moderado a alto de ceniza, elevándose unos 200 a 300 m sobre el cráter, para luego dirigirse hacia el W; las medidas con cámara infrarroja de esta emisión dieron una temperatura (TMA) de 27.1° C (Fig. 6), muy inferior a los 200.3° C medidos durante el vuelo del 3 de septiembre.
Al igual que lo observado durante el vuelo del 3 de septiembre, tampoco en esta ocasión se observaron bloques acompañando a las columnas de emisión, como se pudo observar en las imágenes térmicas durante el vuelo del 26 de agosto. Igualmente se debe indicar que en varios sitios de los flancos se pudo observar la presencia de nuevas anomalías termales en el glaciar, las mismas que no habían sido vistas anteriormente.
Observaciones Visuales:
En los últimos días se han observado columnas de ceniza que no suben más de 1 km por encima del cráter. El domingo 06 de Septiembre, las emisiones del volcán tuvieron poco contenido de ceniza y su columna no subió más de 1 km sobre el nivel del cráter (Fig. 7).
Durante el vuelo del día 9 de septiembre, de manera similar a lo que se observó en el glaciar del flanco N durante el vuelo del 3 de septiembre, fue notorio observar en el flanco S la presencia de agua y humedad en el contacto del glaciar con la superficie del terreno, desde allí se formaban delgados hilos de agua los que descendían aguas abajo por el flanco (Fig. 8) hasta los drenajes principales del volcán; adicionalmente se observó que el glaciar se encontraba completamente distorsionado por la presencia de innumerables grietas que lo cruzaban, estas no habían sido vistas con anterioridad, posiblemente esto obedece al descongelamiento del glaciar.
Escenarios:
Considerando los datos obtenidos, se plantean como posibles los escenarios 2a y 2b para las próximas semanas, que fueran presentados en el Informe Especial N.- 9 del 21 de agosto del 2015, los cuales contemplan la ocurrencia de ascensos de volúmenes de magma desde la cámara magmática hacia el reservorio:
2a) Llegan lentamente varios pulsos de nuevo magma al reservorio, espaciados entre sí por un tiempo de varias semanas o meses. En este caso, varios pulsos de actividad eruptiva se materializan varias veces, con lo que el presente proceso eruptivo se prolonga por meses (tipo Tungurahua). Los espesores de ceniza acumulados son importantes en las direcciones predominantes del viento. La erupción termina siendo una VEI 2-3.
2b) Los pulsos de magma que ascienden tienen volúmenes mayores y una mayor velocidad de ascenso. Esto hace que las altas presiones producidas abran violentamente el conducto volcánico y se produzcan erupciones paroxismales de VEI 3-4 (tipo junio, 1877) con la generación de flujos piroclásticos en todos los flancos dado el carácter central del cráter, con predominancia hacia la dirección del viento. Los flujos piroclásticos en su contacto con el glaciar disparan lahares que bajan por uno o todos los tres drenajes que nacen en el volcán. Estos lahares (flujos de escombros) viajan decenas o cientos de kilómetros por los valles de los ríos y producen depósitos de decenas de metros de altura. A las erupciones paroxísmicas, siguen otras menores que van decayendo en intensidad hasta que cesan luego de varios meses o años. Dependiendo del tamaño de los episodios eruptivos se producen o no más lahares aunque de volúmenes y caudales mucho menores que el evento principal. El tamaño final de la erupción es un VEI 4.
Estos escenarios pueden ser cambiados en el futuro de acuerdo a la evolución de la actividad del volcán.
Conclusiones:
Se ha registrado una disminución en el tamaño de los episodios de tremor, lo cual está relacionado a una disminución tamaño de las emisiones de ceniza. También se ha observado una disminución en el contenido de ceniza en las columnas de emisión.
La ocurrencia de un sismo de magnitud 3.4 bajo el cráter y los cambios observados en la proporción de material juvenil en la ceniza sugieren que el magma continúa moviéndose lentamente en el interior del volcán. Por lo indicado, se considera que la disminución de la actividad que se ha observado en los últimos días puede ser temporal y no se puede descartar la ocurrencia de nuevos pulsos de actividad eruptiva.
PM,MR,BB,PR
Instituto Geofísico
Escuela Politécnica Nacional
Con el apoyo logístico de una aeronave por parte del MICS, personal del Instituto Geofísico semanalmente realiza sobrevuelos desde el aeropuerto de Tababela en dirección al volcán Cotopaxi, en un avión Twin Otter de la FAE (452).
La finalidad de estos sobrevuelos es:
* Toma de imágenes térmicas del volcán
* Monitoreo de la actividad superficial
* Evaluación de gases con el instrumento multigases.
Toda esta información es recopilada para los informes diarios y especiales que realiza el IGEPN en el monitoreo del volcán Cotopaxi.
Observaciones visuales y térmicas del volcán, disminución de la energía sísmica y características de las cenizas analizadas
05 de Septiembre de 2015
Observaciones y mediciones realizadas desde avión:
El día 3 de septiembre, con el apoyo logístico de una aeronave por parte del MICS, se efectuó un sobrevuelo desde el aeropuerto de Tababela en dirección al volcán Cotopaxi, en un avión Twin Otter de la FAE (452), al mando del Cap. Byron Pardo, siguiendo la ruta que se muestra en la figura 1.
Durante la aproximación al volcán se pudo apreciar una columna de emisión que se elevaba unos 1000 m sobre el cráter y luego se dirigía hacia el W, posteriormente por efecto de los vientos de altura ésta cambiaba su rumbo y se dirigía hacia el norte (Fig. 2), fue posible observarla cruzando sobre el aeropuerto de Tababela.
Una vez en el sector del volcán se observó que éste emitía una columna de vapor de agua con un contenido moderado a alto de ceniza, la cual ascendía hasta unos 1000 m de altura sobre el cráter, inicialmente desplazándose sobre el flanco occidental y luego en dirección al norte, donde alcanzó una altura de unos 8500 msnm, de acuerdo al reporte de la VAAC. La cobertura de ceniza sobre el volcán va desde el flanco superior NNE hasta el flanco SSW.
Como ya se mencionó en informes anteriores, en varias zonas de la parte superior de algunos glaciares se continúa observando la presencia de nuevas grietas, principalmente en los flancos E y NE y sobre la pared de Yanasacha. Zonas con desprendimientos de rocas y acumulación de material al pie de la pared, se observaron en el sector de Yanasacha. Tanto en el sector de la cumbre norte, como en la cumbre sur y otras partes altas del cono, se observó la acumulación de bloques balísticos, así como de pequeños cráteres de impacto de los mismos bloques que son expulsados durante las emisiones.
En esta oportunidad, en un momento cuando la intensidad de la emisión disminuyó, se pudo observar de mejor manera una parte del interior del cráter. Se confirmó que el glaciar circular al interior del cráter (dona), en el sector sur, debido a la actividad del volcán, ha disminuido significativamente en sus dimensiones y presenta grandes fracturas (Fig. 3), lo cual podría indicar que el mismo ha experimentado un proceso de fusión. De manera general se puede decir que las zonas de fusión del glaciar en los flancos superiores del volcán han incrementado sus dimensiones.
Fue notorio observar en el flanco N la presencia de agua y humedad en el contacto del glaciar con la superficie del terreno, desde allí se formaban delgados hilos de agua los que descendían aguas abajo por el flanco (Fig. 4) hasta los drenajes principales del volcán.
Dadas las condiciones de la emisión continua, el monitoreo termal se lo hizo únicamente en los flancos N, E, S y en la parte S del cráter interno. Las temperaturas más altas que se registraron fueron en la columna de emisión con una temperatura (TMA) de 200.3° C (Fig. 5), esto es una temperatura mayor que la registrada en la columna de emisión del 26 de agosto, que fue del orden de 150° C. En algunas zonas de los flancos S y E se nota un incremento de pocos grados centígrados de las temperaturas en relación a lo medido el 26 de agosto, por ejemplo la zona flanco Sur 4 y la zona flanco oriental 1. En las zonas restantes se mantienen las temperaturas o hay una disminicion.
Es interesante también notar que en esta ocasión no se observaron bloques acompañando a las columnas de emisión, como se pudo observar en las imágenes térmicas durante el vuelo del 26 de agosto. Por otro lado se debe indicar que en varios sitios de los flancos se pudo observar la presencia de nuevas anomalías termales que no habían sido vistas anteriormente, como se muestra en la figura 5.
Sismicidad:
Por otro lado la sismicidad ha mantenido niveles de amplitudes sísmicas presentan valores menores comparados con hace una semana (Fig. 6), aunque sus valores son aún mucho mayores a los niveles anteriores a Junio.
Los señales sísmicas están caracterizadas por episodios de tremor de amplitud moderado (Fig.7) y de eventos sísmicos discretos ocasionales cuyos ubicaciones están alineados con el conducto volcánico a varios kilómetros de profundidad, especialmente unos sismos volcano-tectonicos y VLP´s del 01 y 02 de Septiembre que fueron reportados en el reporte No. 13 (Fig. 8a y 8b).
Características de las cenizas analizadas:
Muestras de cenizas que cayeron en el flanco occidental del volcán Cotopaxi, entre el 15 a 26 de agosto, fueron analizadas en el laboratorio del Dr. Pierre Delmelle de la Universidad de Louvain, Bélica, especialista en la química de las cenizas y sus efectos sobre la agricultura y vida humana. Los resultados (Tabla 1) muestran que las cenizas tienen un pH relativamente bajo, concentraciones de sulfatos (SO4) y mayormente concentraciones de fluor (F) y cloruro (Cl) no elevadas.
El especialista Delmelle dice que el pH bajo pueda tener implicaciones en el piel y el sistema digestivo de los animales herbívoros quienes se alimentan de la hierba cubierta con la ceniza. Las plantas pueden sufrir de la acidez y eventualmente podría ser corrosivo para techos y metales. El elemento fluor (F) no parece tener los niveles para causar problemas en las articulaciones o dientes de los animales herbívoros, una condición que se llama flurosis y que fue evidente en el salud de los animales durante erupciones basálticas en Chile del volcán Lonquimay.
Las cenizas que actualmente están siendo lanzadas por el volcán Cotopaxi son el producto de la erosión de las rocas del conducto o del sistema hidrotermal del volcán, donde hay un ambiente de roca alterada por condiciones ácidas, particularmente con respecto al SO4. Eventualmente, si el sistema eruptivo muestra una mayor concentración de partículas magmáticas de material juvenil (nueva magma), el pH debe subir (normalizarse) y tendría una menor concentración de SO4. Todos los días se está recolectando cenizas y estas son analizadas por miembros del IGEPN para identificar cambios de productos de sistema hidrotermal a uno mayormente magmático.
Resumen:
Se ha registrado un incremento de las temperaturas en la columna eruptiva de gases y cenizas. Las amplitudes de las señales sísmicas no muestran una tendencia creciente, pero se han detectado sismos discretos ocasionales que están alineados con el conducto a profundidades de entre 3 a 11 kilómetros bajo el cráter y que están asociados con la presencia y empuje de magma. Por otro lado, las cenizas recolectadas y estudiadas hasta el 02 de Septiembre, sugieren que todavía el mayor aporte de estos productos es roca pre-existente y alterada y relacionada con el conducto y no todavía con un nuevo cuerpo magmático. Esta situación pudría cambiar con la continuación del proceso eruptivo y el correspondiente ascenso de magma.
PR,SV,MA,PM,MR
Instituto Geofísico
Escuela Politécnica Nacional
© 2024 Instituto Geofísico - EPN
Inicio | Escuela Politécnica Nacional | Correo Institucional
Ladrón de Guevara E11-253, Aptdo. 2759 Quito - Ecuador.
Teléfonos: (593-2)2225655 ; (593-2)2225627 Fax: (593-2)2567847