Los volcanes activos son observados a través de diversas tecnologías.
La población de la comunidad de Columbe nos reportó la emanación de gases en el sector Miraflores – San José (cercanías del río Gaushi), en la provincia de Chimborazo, el lunes 25 de enero del presente año. Según los pobladores estos gases se observaron al menos quince días antes dicho reporte.
Varias hipótesis se habían emitido con respecto al origen de estos gases, incluyendo un posible origen volcánico. Con el fin de obtener datos de la zona y determinar la naturaleza de los gases una comisión de técnicos del Instituto Geofísico de la Escuela Politécnica Nacional con la coordinación de la SGR Zona 3 realizó trabajos de campo en la zona (Figura 2).
CONTEXTO GEOLÓGICO DE LA ZONA
En esta zona se han reconocido algunas fallas tectónicas recientes, la más importante, la Falla Pallatanga continua hacia el noreste y pasa al norte de Colta. Esta falla pertenece al sistema mayor dextral del Ecuador.
Las rocas sedimentarias de la cuenca Alausí-Riobamba discordantemente rocas del basamento se superponen de la unidad Pallatanga y una potente secuencia de rocas volcánicas del Oligoceno-Mioceno, que se puede distinguir en las siguientes formaciones:
Facies volcánicas de la parte más inferior de la Formación Huigra (Eguez et al., 1992); que sugiere se correlacionan con el grupo de Saraguro.
Parte superior de la Formación Alausí, cuyas edades radiométricas que se correlacionan con los volcano-clásticos del Mioceno tardío, volcánicos Turi y formación Tarqui (Hungerbühler et al., 2002) en el ante-arco del sur ecuatoriano.
Aunque no se observó el contacto físico, los lacustres de la formación Sicalpa se asume que recubrió inconformemente a los volcánicos Alausí (Lavenu et al., 1992).
Los potentes abanicos aluviales y conglomerados fluviales de la Formación Palmira recubren la Formación Sicalpa del Plioceno con una discordancia angular (Eguez et al., 1992; Lavenu et al, 1996). La presencia de estos sedimentos gruesos, que provienen del este, indica un cambio tectónico y / o climático durante el Plioceno tardío (Lavenu et al., 1996). Estas facies gruesas pueden haber sido depositadas durante la deformación sinsedimentaria en la Formación Latacunga contigua, y un régimen tectónico compresivo puede haber prevalecido durante la deposición de la Formación Palmira.
1. Medidas de las emanaciones de gases
A través de la observación se pudo constatar la emisión de gas a través de las grietas. Este gas tiene un color grisáceo y tiene un olor similar al que despide la madera o carbón quemado. No se percibió olor a azufre en la zona.
Se utilizó un instrumento capaz de detectar múltiples especies “Multigas” para detectar las concentraciones de gases emanados por las grietas.
Se realizaron medidas del gas usando el instrumento “Multigas” y se detectaron concentraciones de CO2 de 1000 a 2500 ppm, siendo la concentración normal de CO2 en la atmosfera de 400 a 450 ppm. Las altas concentraciones de CO2 medidas en la zona podrían estar asociadas a la combustión de suelos enriquecidos en materia orgánica o de las turbas encontradas en la zona. No se midieron gases de origen volcánico como el SO2.
Además se recolectó una muestra de agua para ser analizada, los resultados de dicho análisis se darán a conocer cuando sean entregados por el laboratorio.
2. Medición de Temperatura
Utilizando dos métodos diferentes: se procedió a medir los valores de temperatura de los gases emanados por las grietas.
- Termocupla: Permite medidas de temperatura en situ a través de una barrilla conductora que fue enterrada en tres diferentes puntos del lugar. Los Puntos 1 y 3 corresponden a grietas donde la salida de gas era evidente, el punto 2 corresponde solamente a un horizonte de suelo sin emisiones de gas evidente.
Las temperaturas medidas fueron:
- Cámara térmica FLIR: La Temperatura máxima aparente (TMA) medida con la cámara térmica (Figura 8) alcanza el valor de 434°C en la zona de combustión.
Valores de temperatura menores se encontraron en la superficie de las paredes de esta grieta, las cuales por efecto de conducción alcanzan temperaturas del orden de 88±4 °C y menores, a medida que se alejan del interior de las grietas
3. Trabajos Geológicos en el talud y la zona
Se realizó un reconocimiento geológico del afloramiento (Figura 9). Los depósitos encontrados en el afloramiento corresponden a suelos y material de ambiente lacustre, es remarcable la presencia de una capa de turba (1.40 m de espesor aproximadamente).
4. Medición de parámetros Físico-Químicos en aguas
Según el testimonio de uno de los moradores del sector, varias truchas de un criadero aledaño habían muerto inexplicablemente el 24 de enero. Para descartar vinculación entre este fenómeno y la emanación de gases desde la grieta se procedió a tomar medidas de pH, conductividad y temperatura en el criadero.
El pH que se obtuvo de la medición está considerado dentro del rango normal, el agua puede albergar peces de agua dulce con pH entre 6-8. La temperatura se mantiene en un rango adecuado de manera que no significa una amenaza para la vida de los peces. Se requiere el resultado de los análisis de laboratorio para verificar si algún compuesto tóxico se encuentra presente.
5. Testimonios de los Moradores
Como parte de la investigación del fenómeno de salida de gas desde la grieta se entrevistó a los moradores de la zona, al párroco de Columbe, miembros del cuerpo de Bomberos de Colta, al dueño del criadero de truchas y del terreno.
Los testimonios de estas personas son muy importantes pues permitirá hacer una reconstrucción de los hechos y tener una mejor idea de que puede estar ocurriendo en la zona. A continuación se recogen algunos de los hechos ocurridos en Columbe:
- Hace dos semanas aproximadamente, el dueño del terreno prendió fuego al terreno con la finalidad de eliminar la maleza existente en el mismo.
- El día domingo 24 de enero de 2016, algunas de las truchas del criadero amanecieron muertas.
- El párroco de Columbe asevera que hace aproximadamente un mes se podían observar pequeñas emisiones de vapor debajo de un árbol ubicado en la zona, mismo que se quemó y actualmente se encuentra caído.
- El Párroco asegura que se observó incandescencia en la zona a partir del lunes 25 de enero del 2016.
- El día martes 26 de enero los bomberos de Colta bombearon agua desde el río con el objetivo de sofocar las llamas, además procedieron a escavar parte del talud causando inestabilidad y provocando el deslizamiento de una parte del afloramiento.
6. Conclusiones
En base a todos los datos y trabajo de campo se pueden establecer que:
7. Recomendaciones
DS, PE, MC, ET, SH, BB, MA, JG, PR, MR
Instituto Geofísico
Escuela Politécnica Nacional
Actividad externa baja e interna moderada
Resumen
Durante las últimas semanas se ha observado una baja actividad externa en el volcán Cotopaxi, que está caracterizada principalmente por poca presencia de vapor en la cumbre, esporádicas columnas de gases y muy poca emisión de ceniza. Algunos parámetros de monitoreo (SO2, sismos tipo LP, tremor, ceniza) regresaron prácticamente a su nivel de base pre-eruptivo pero se siguen registrando sismos tipo VT's (~90 por día) y algunas explosiones internas indicando posiblemente la permanencia de una fuente de presión en el volcán. Al momento el escenario más probable es que la actividad superficial del volcán se mantenga a un nivel bajo. En este escenario se prevé que el volcán siga produciendo pequeñas emisiones de ceniza sin afectación a las poblaciones aledañas al volcán y lahares secundarios que se queden dentro de los límites del Parque Nacional Cotopaxi como hasta ahora. No se descarta una mayor actividad del volcán en las próximas semanas pero es el escenario menos probable. Al final del informe se detallan estos escenarios.
Observaciones visuales
Durante las últimas semanas, las condiciones de observación visual han sido variables pasando por días completamente nublados hasta días completamente despejados. La actividad superficial ha estado caracterizada principalemente por emisiones de baja energía de gas al nivel del cráter alcanzando en ocasiones hasta 800 m sobre el nivel del mismo (Fig. 1A y 1B). El 24 de enero a las 18h43 TU (Tiempo Universal) se produjo una emisión con contenido bajo a moderado de ceniza que alcanzó 700 m snc (Fig. 2A y 2B) dirigida por el viento hacia el Occidente. Esta emisión coincide con un sismo de tipo híbrido (Magnitud 2.3).
Sismicidad
Durante la última semana, la actividad sísmica del volcán Cotopaxi no ha mostrado mayor cambio respecto a las semanas anteriores. El volcán continúa presentando principalmente eventos Volcano-Tectónicos (VT) con un promedio de alrededor de 90 VT/día (Fig. 3) y pocas explosiones pequeñas. La mayoría de estos eventos se localizaron bajo el cráter entre 2 y 10 km de profundidad con magnitudes entre 0.5 y 2.5 (Fig. 4). El número de eventos de Largo Periodo (LP) se mantiene en su nivel de base desde mediados de octubre de 2015 (< 5 LP/día; Fig. 5) al igual que los episodios de tremor.
Deformación
Los resultados del inclinómetro de VC1 muestran un patrón de deformación casi plano desde finales de octubre para el eje radial y finales de noviembre para el eje tangencial. Sin embargo no se observa un regreso a los valores pre-eruptivos. Como consta en la Figura 6, no se observa una nueva deformación asociada a los VT's de las últimas semanas. Los demás instrumentos tampoco muestran una deformación del edificio volcánico.
Emisión del SO2
Las emisiones de SO2 se mantuvieron por debajo de 1000 ton/día en las últimas semanas (Fig. 7). Los valores obtenidos regresaron casi al nivel de base pre-eruptivo.
Caída de ceniza
Desde el 23 de noviembre de 2015 no se registraron caídas de ceniza significativas asociadas a la actividad del volcán. Las pequeñas emisiones de Enero probablemente no produjeron caídas de ceniza medibles en las proximidades del volcán.
Lahares
Desde el 28 de agosto de 2015 varios lahares secundarios se han producido en el volcán Cotopaxi. A diferencia de los lahares primarios que se originan por contacto del material volcánico incandescente con el hielo durante erupciones grandes, su origen se debe a intensas lluvias que caen en la parte alta del volcán y arrastran pendiente abajo la ceniza que se depositó en los flancos durante la fase eruptiva que empezó el 14 de Agosto de 2015. Esta mezcla inicial incorpora rocas y otro tipo de escombros al transportarse pendiente abajo, viajando hasta que la pendiente y su energía lo permitan. Algunos de estos lahares se han generado también debido a los deshielos que se han producido constantemente. El volumen esperado de los lahares secundarios producidos por las lluvias es mucho menor al esperado por las erupciones grandes del Cotopaxi. Hasta hoy se han registrado 39 lahares secundarios, la mayor parte de ellos han descendido por la quebrada Agualongo ubicada al occidente del volcán, y unos pocos por los flancos norte y nororiental. En general son lahares muy pequeños que no sobrepasan un caudal de 10 m³/s. Se detallan a continuación los lahares más caudalosos que se han registrado (Tabla 1).
Interpretación
Los datos de monitoreo obtenidos hasta el 28 de enero de 2016 indican que ciertos parámetros del monitoreo (SO2, LP's, tremor, ceniza) regresaron casi hasta el nivel de base pre-eruptivo. Todos estos parámetros están vinculados de alguna manera a la salida de gas. La deformación del edificio marca una pausa desde noviembre 2015 pero no ha regresado al nivel pre-eruptivo. Esto que indicaría que la intrusión magmática responsable de la actividad eruptiva entre Agosto y Noviembre 2015 permanece en el lugar de su último emplazamiento con un volumen considerable, el cual no ha disminuido de manera apreciable durante las semanas que duró la emisión de ceniza en este primer episodio de erupción. Adicionalmente los sismos de tipo VT's detectados de manera sostenida durante ya más de cuatro meses y las pequeñas explosiones registradas últimamente indicarían que sigue una fuente de presión al interior del volcán.
Una posible interpretación de este conjunto de resultados es que al momento la parte superior de la intrusión magmática se está transformando en un tapón poco permeable que no deja pasar los gases, los cuales se acumulan hasta producir una pequeña explosión interna. Los VT's podrían ser interpretados como pequeños movimientos de este tapón o pequeñas realimentaciones de magma cuyo volumen no altera el patrón de estabilidad que muestran los valores de deformación desde el fin de Noviembre. Al momento no hay evidencia de un cambio de comportamiento del Cotopaxi respecto a las últimas semanas pero no se puede descartar el inicio de un cambio de estos patrones de estabilidad actuales en plazos cortos. El IGEPN está muy atento de cualquier cambio en las condiciones presentadas por el volcán.
Escenarios
Al momento el volcán no presenta una actividad eruptiva significativa y en función de esto se propone tres escenarios organizados del más probable al menos probable:
Estos escenarios podrán ser cambiados de acuerdo a la evolución de la actividad del volcán.
BB-SH-EV-SH-SA-HY-MR
Instituto Geofísico
Escuela Politécnica Nacional
Durante los últimos días comuneros han observado una emanación de gases con incandescencia en las cercanías del cerro de Columbe, sector Miraflores – San José (cercanías del río Gaushi), en la provincia de Chimborazo. En este momento el Instituto Geofísico de la Escuela Politécnica Nacional envió dos grupos de técnicos al sitio para realizar varias mediciones e investigar la causa de este fenómeno.
Cabe aclarar que la zona donde se registra la salida de gases y la incandescencia está ubicada aproximadamente a 45 km del volcán Chimborazo, como se indica en el mapa adjunto.
Una vez que se tengan los datos de los equipos en campo, se publicará un informe especial en la brevedad posible sobre este fenómeno.
SA-GPM
Instituto Geofísico
Escuela Politécnica Nacional
Los técnicos del Instituto Geofísico Freddy Vásconez, Jorge Córdova, Hugo Ortiz y Carlos Macías realizaron una visita al volcán Reventador del 14 al 16 de enero para el mantenimiento e instalación de equipos de vigilancia volcánica.
Las labores que los técnicos realizaron comprenden las siguientes:
• Mantenimiento del arreglo del infrasonido y la estación sísmica sector LAV4.
• Mantenimiento de la repetidora Reventador-Petro
• Mantenimiento de la estación repetidora de Lumbaqui
• Mantenimiento del arreglo del infrasonido LAVA 9 y Azuela.
• Limpieza de paneles de la estación permanente REVN
• Instalación de la infraestructura para la estación de la cámara térmica en el borde norte de la caldera del volcán
Durante la jornada de trabajo del día 15 de enero del 2016 los técnicos observaron y documentaron varias explosiones, que tuvieron columnas de ceniza que alcanzaron entre 1.5 a 2 km de altura snc (figura 3). El 15 de enero, se observó un flujo piroclástico que descendió por el flanco norte y avanzó aproximadamente 500 m (Figura 4). Además se pudo identificar otros depósitos piroclásticos que descendieron durante las últimas 3 semanas (figura 5).
FV/HO/JC/MC/PE/PM
Instituto Geofísico
Escuela Politécnica Nacional
Actualización de la Actividad Eruptiva – Volcán Cotopaxi N°2
Registro de un pequeño lahar secundario
13 de Enero del 2015
El día de hoy desde las 13h36 (TL) se registró una señal sísmica en la estación BNAS ubicada en el flanco Occidental del volcán, esta señal tuvo una duración de 1 hora (Figura 1).
Figura 1. Sismograma de la estación BNAS. Se observa la señal del lahar ocurrido el día de hoy.
Se trata de un lahar secundario producto de las lluvias que se registraron en ese momento en la zona, es ligeramente más grande que el ocurrido el 28 de Noviembre del 2015 (Ver informe de ese día), sin embargo el lahar se mantuvo dentro de la zona del Parque Nacional Cotopaxi.
La cámara del ECU-911 muestra el depósito dejado por el lahar en el puente sobre la quebrada Agualongo, sin que haya generado mayores daños (Figura 2).
Figura 2. En la cámara del sistema ECU-911 se observan las evidencias del depósito dejado luego del paso del lahar en el puente de la quebrada
El sistema de monitoreo del IG también detectó señales de lahares en las quebradas Agualongo, cabecera del Cutuchi en el sector Mariscal Sucre, San Lorenzo y San Ramón. Esto permitió informar inmediatamente a las autoridades correspondientes.
De acuerdo a resultados preliminares su caudal pico es de alrededor de 40 m3/s con un volumen aproximado de 50.000 m3.
CONCLUSIONES
Este es el lahar secundario más grande registrado hasta la fecha en el Cotopaxi desde que se inició el proceso eruptivo, aunque tiene un tamaño cercano a los eventos del 20 de Septiembre y del 28 de Noviembre del 2015. Estos lahares secundarios tienen un alcance restringido y que normalmente no llegan afectar a zonas pobladas. Hay que indicar que el sistema de detección de lahares del IG registró el tránsito del mismo en varias estaciones, lo que permitió informar oportunamente a las autoridades.
GP/AO/PR/SA/MR
INSTITUTO GEOFÍSICO
ESCUELA POLITÉCNICA NACIONAL
Actualización de la Actividad Eruptiva del Volcán Cotopaxi - N° 01
Disminución de la actividad superficial
07 de enero de 2016
Resumen
Durante el mes de Diciembre de 2015 se ha observado un bajo nivel de la actividad superficial en el volcán Cotopaxi, la cual está caracterizada por ligeras emisiones pulsátiles de gas, de color blanco provenientes del cráter y alcanzando excepcionalmente 1 km sobre el mismo. La presencia de ceniza ha sido casi nula, como se pudo comprobar en los dos últimos recorridos de campo realizados alrededor del volcán.
No obstante, la actividad interna se mantiene en niveles considerados como moderados. La actividad sísmica se mantiene similar a los niveles registrados el mes pasado, con pocos sismos de tipo LP, explosiones pequeñas y tremores de emisión. Particularmente se destacan los sismos VT’s, en que su número se mantiene entre 30 a 100 sismos por día, similar a lo registrado en el período anterior. La mayoría de estos eventos tipo VT son de magnitudes bajas.
Los niveles del gas SO2 se han mantenido en menos de 1000 ton/día, lo que es una reducción considerable con respecto a los 3000 ton/día registrados en los meses precedentes.
Al momento la actividad del volcán está circunscrita a lo indicado en el Escenario “1” descrito en las actualizaciones previas y al final de este documento. Este escenario prevé que el volcán continuará produciendo leves emisiones, posiblemente explosiones ocasionales de tamaños pequeños a moderados y lahares secundarios que se quedarán al interior del área del Parque Nacional Cotopaxi.
Parque Nacional Cotopaxi se abre con medidas de seguridad para visitantes
Tras 119 días del cierre del Parque Nacional Cotopaxi, las autoridades gubernamentales anunciaron hoy, 11 de diciembre del 2015, la reapertura del área protegida para el disfrute de los visitantes.
La decisión se basa en los informes de monitoreo y seguimiento del Instituto Geofísico de la Escuela Politécnica Nacional (IGEPN) que indican que la actividad del volcán en estas últimas semanas ha mostrado una disminución tanto interna como superficial. Además, la Secretaría de Gestión de Riesgos (SGR) ha recomendado que mientras continúe la alerta amarilla se podrían realizar visitas controladas con personal capacitado.
El Ministerio del Ambiente (MAE), en coordinación con la SGR y el Ministerio Coordinador de Seguridad (MICS), ha trabajado para garantizar la seguridad de todos los ciudadanos que visitan el parque, mediante la dotación de equipos de telecomunicaciones, articulados al Sistema de Alerta Temprana existente. También ha potenciado la comunicación interna, dotando al personal de radios portátiles, conectados directamente al Servicio Integrado de Seguridad ECU-911. Con estos instrumentos se asegura la entrega de avisos oportunos a los guardaparques y a los visitantes.
El MAE también elaboró un plan de contingencia que incluye las acciones vigentes durante la alerta amarilla. El plan parte de un diagnóstico, análisis de vulnerabilidades y amenazas. Aterriza en acciones de prevención, control de riesgos como: protocolos de alarma y comunicaciones, detección de emergencias, y procedimientos operativos para guardaparques, técnicos y para el administrador del área.
Este plan se complementa con la capacitación que la SGR y el Instituto Geofísico de la Escuela Politécnica Nacional (IGEPN) realizaron a guardaparques, especialistas en áreas protegidas y al administrador del Parque Nacional Cotopaxi.
Todas estas acciones van de la mano con un una estrategia de comunicación para visitantes, un folleto informativo de distribución masiva con recomendaciones de autoprotección y un plan de comunicación en redes en el que participan todas las instituciones involucradas en el monitoreo, gestión y seguridad del Parque Nacional Cotopaxi.
Es importante resaltar que el coloso, es uno de los volcanes mejor monitoreados de Latinoamérica, reconocido por el Servicio Geológico de Estados Unidos y la Red NOVAC, encargada de la observación de cambios volcánicos y atmosféricos en el mundo. Sin embargo, el Gobierno Nacional robusteció la red de monitoreo de ese volcán. Una muestra de ello es la dotación de equipos tecnológicos que refuerza la red actual de monitoreo, la cual funciona los 365 días de año y sustenta el Sistema de Alerta Temprana implementado. Entre ellos están: 16 estaciones sísmicas, 5 detectores de infrasonido, 13 detectores de lahares, 7 estaciones de video telemetría, 1 cámara térmica, 12 líneas de control de deformación, 5 inclinómetros, 5 estaciones de GPS, 5 estaciones de medición de gas, 1 móvil multigas, cenizómetros y 10 repetidoras.
Cabe indicar que en ningún caso el trabajo de monitoreo en el mundo puede anticipar con fecha y hora las erupciones del volcán, pero sí activar un protocolo de seguridad y prevención.
Una vez que se han verificado las condiciones de seguridad y que se cuenta con instrumentos de alta tecnología así como personal capacitado, se decidió reabrir el Área Recreacional El Boliche y el Parque Nacional Cotopaxi. En este último se identificó una ruta de visita segura que se extiende desde el control Caspi, ubicado en el lado sur (ingreso desde la Panamericana, Quito-Latacunga), hasta el Control Norte ubicado en El Pedregal, cantón Machachi.
El horario de ingreso de visitantes en los dos casos es de 09:00 a 14:00. La ruta habilitada dentro del Parque Nacional permite la evacuación por el control Caspi y el control Norte. También existen dos sitios seguros, libres de lahares: ruta La Rinconada y la ruta de la Laguna de Limpiopungo. Hay que tomar en cuenta que la apertura es parcial y no está permitido el acceso al refugio ni el ascenso al cráter.
Los alrededores del Parque no han sido desatendidos. El Ministerio de Turismo (MINTUR) ha trabajado con 43 personas en la construcción de planes de contingencia para los 12 establecimientos hoteleros y las cinco comunidades más cercanas a la zona de influencia del volcán. Adicionalmente, con el apoyo de los municipios de Mejía y Tena se capacitó a 23 representantes de operadoras y guías turísticos en temas relacionados con la actividad volcánica, rescate y primeros auxilios.
Todo lo expuesto demuestra que el trabajo coordinado entre las instituciones del Estado ha permitido reabrir el parque, garantizando la seguridad de los visitantes, pese a que el proceso de erupción del Cotopaxi continúa.
El día 18 de noviembre, con el apoyo logístico de una aeronave por parte del MICS, se efectuó un sobrevuelo desde el aeropuerto de Tababela en dirección a los volcanes Cotopaxi y Tungurahua, en un avión Twin Otter de la FAE (452), siguiendo la ruta que se muestra en la Figura 1.
VOLCÁN COTOPAXI
Observaciones visuales
Durante la aproximación al Volcán Cotopaxi se pudo apreciar que este se encontraba nublado casi en su totalidad y solamente se pudo observar parte de sus flancos norte, occidental y sur, en especial las lenguas terminales de los glaciares; sobre la cumbre se pudo observar una columna de vapor y gases sin contenido de ceniza, esta fue pulsátil y poco energética, y se dirigía hacia el occidente, y alcanzando una altura inferior a 500 m (Fig. 2). La ceniza que cubría los flancos del volcán ha sido cubierta casi en su totalidad por las recientes nevadas, sin embargo es notable la ausencia de emisiones que contengan carga de ceniza varios días antes del vuelo.
Es evidente que los glaciares del volcán, en los últimos meses han sufrido severos cambios en su morfología, una gran cantidad de grietas con dimensiones que superan varias decenas de metros de amplitud en superficie y profundidad se pudieron observar principalmente en los flancos sur y occidental; estas grietas aparentemente se originan por procesos de fusión del casquete glaciar como consecuencia del incremento de temperatura en la superficie del terreno en contacto con el fondo del glaciar, lo cual finalmente da lugar al deterioro cada vez más brusco de los glaciares producto (Fig. 3 y 4). Los procesos de fusión indicados son en muchos casos los responsables de muchos de los lahares secundarios en los flancos del volcán.
Monitoreo Térmico
Las malas condiciones climáticas no permitieron obtener medidas de la mayoría de anomalías térmicas previamente identificadas y analizadas en vuelos anteriores al Cotopaxi. La temperatura máxima aparente (TMA) correspondió al sector de Yanasacha (Fig. 4) con un valor de 28,4ºC, valor inferior al obtenido para este sector en el vuelo realizado el 02 de octubre, de 39,8ºC. De alguna manera las temperaturas analizadas pueden estar bajo la influencia de agentes externos (ej. nubosidad) que pueden ser causantes de la alteración de los resultados al momento del análisis.
Las nubes que cubrían la cumbre del volcán no permitieron una observación directa de la actividad fumarólica.
VOLCÁN TUNGURAHUA
Observaciones visuales
Durante la aproximación al Volcán Tungurahua se pudo observar que este se encontraba completamente nublado y solamente se divisaba una columna de emisión con alto contenido de ceniza que se dirigía hacia el occidente (Fig. 5).
MA, PR, SV
Instituto Geofísico
Escuela Politécnica Nacional
© 2025 Instituto Geofísico - EPN
Inicio | Escuela Politécnica Nacional | Correo Institucional
Ladrón de Guevara E11-253, Aptdo. 2759 Quito - Ecuador.
Teléfonos: (593-2)2225655 ; (593-2)2225627 Fax: (593-2)2567847